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Marine Recreational Information Program (MRIP)

◮ NOAA Fisheries is responsible for managing marine fisheries under
the Magnuson-Stevens Act
◮ MRIP produces estimates of marine recreational catch in US waters
◮ input into stock assessment models, used to set annual catch limits

◮ In MRIP, multiple surveys are combined to create estimates
◮ Access Point Angler Intercept Survey (APAIS)
◮ Fishing Effort Survey (FES)
◮ (others)

◮ APAIS: stratified multi-stage sample of fishing trips, collecting
detailed data on trip and catch characteristics

◮ FES: stratified sample of general population households, collecting
data on number of fishing trips over past 2 months
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MRIP Estimation

◮ Combination of APAIS and FES:
◮ survey weights in APAIS are calibrated to FES-obtained estimates of

number of trips by state and wave
◮ other adjustments for undercoverage of respective frames

◮ NOAA Fisheries provides public-use datasets with trip-level data and
calibrated weights

◮ Variance estimation: current method uses linearization based on
APAIS design
◮ does not account for calibration to FES
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Sample-based Calibration

◮ Calibration reduces the variance of survey estimators, so it is
generally beneficial to account for it in variance estimation
◮ In particular, variance of estimated control totals is zero (for

population-based controls)

◮ But: sample-based calibration equalizes estimates between surveys,
may not reduce variance
◮ Important to account for variance contributions from both surveys

into final variance estimates

◮ We describe methods to incorporate calibration into replicate
variance estimation, when calibration totals are themselves random
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2. Methodology: Primary Survey (APAIS)

◮ Sample s, weights wi

◮ Population total ty =
∑

U yi estimated by t̂y =
∑

s wiyi
◮ e.g. t̂y = estimated total catch of striped bass by private boat in GA

during May-June 2019

◮ Replication variance estimator

V̂ (t̂y ) = A

R∑

r=1

(
t̂(r)y − t̂y

)2

with t̂
(r)
y =

∑
s w

(r)
i yi

◮ Replicate weights w
(r)
i , r = 1, . . . ,R and constant A determined by

replication method

⇒ Balanced Repeated Replication (BRR) with Fay’s adjustment
⇒ R = 160
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Calibration Survey (FES)

◮ Sample sC , weights wCi

◮ Estimator t̂Cx =
∑

sC
wCix i of length H, to be used as controls

◮ e.g. t̂Cx,h = estimated number of angler trips by private boat in GA
during May-June 2019

◮ Estimator V̂C (t̂Cx) of H × H variance-covariance matrix Var(t̂Cx)
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Calibration of Primary Survey: Regression Estimation
◮ Regression estimator with calibration vector t̂Cx

t̂y ,reg = t̂y + (t̂Cx − t̂x)
T β̂ =

∑

s

w∗

i yi

◮ Define ei = yi − βT
Ux i , then asymptotic variance

AVar(t̂y ,reg) = Var(t̂e) (variance with fixed controls)

+βT
UVar(t̂Cx)βU (effect of random controls)

◮ For fixed t̂Cx , Var(t̂e) consistently estimated by

V̂ (t̂y ,reg) = A

R∑

r=1

(
t̂(r)y ,reg − t̂y ,reg

)2

with

t̂(r)y ,reg = t̂(r)y + (t̂Cx − t̂
(r)

x )T β̂
(r)

=
∑

s

w
∗(r)
i yi

(“apply calibration to each replicate”)
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Approaches to Estimate AVar(t̂y ,reg)

1. Direct plug-in: V̂ (t̂ê) + β̂
T
V̂ (t̂Cx)β̂

2. Opsomer and Erciulescu (2021): when replicates are available for

both surveys, create replicated control totals t̂
(r)

Cx to calibrate
primary survey replicates (originally proposed by Kott (2005))

3. Fuller (1998): compute eigen-decomposition of V̂ (t̂Cx) and perturb
controls of primary survey replicates
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Implementing Opsomer and Erciulescu (2021) Method

◮ Applicable when control survey has replicates for variance estimation

◮ Estimate vector t̂Cx =
∑

sC
wCix i

◮ Replicate variance-covariance matrix estimator

V̂C (t̂Cx) = AC

RC∑

r=1

(
t̂
(r)

Cx − t̂Cx

)(
t̂
(r)

Cx − t̂Cx

)T

with t̂
(r)

Cx =
∑

sC
w

(r)
Ci x i

◮ Replicate weights w
(r)
Ci , r = 1, . . . ,RC and constant AC determined by

control survey replication method
◮ Assume RC = R
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Implementing Opsomer and Erciulescu (2021) Method (2)

◮ Adjust control totals in replicates of primary survey, based on
replicates from control survey

t̂(r)y ,reg = t̂(r)y + (t̂Cx + ar (t̂
(r)

Cx − t̂Cx)− t̂
(r)

x )T β̂
(r)

= t̂(r)y + (t̂Cx − t̂
(r)

x )T β̂
(r)

+ ar (t̂
(r)

Cx − t̂Cx)
T β̂

(r)

◮ Set ar =
√
AC/A, then

V̂ (t̂y ,reg) = A

R∑

r=1

(
t̂(r)y ,reg − t̂y ,reg

)2

consistent for

AVar(t̂y ,reg) = Var(t̂e) + βT
UVar(t̂Cx)βU
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Implementing Fuller (1998) Method
◮ Assume H = R for now
◮ Compute eigen-decomposition of V̂ (t̂Cx)

V̂ (t̂Cx) =

H∑

h=1

λhqhq
T
h =

H∑

h=1

δhδ
T
h

◮ Adjust control totals in replicates of primary survey

t̂(r)y ,reg = t̂(r)y + (t̂Cx + arδr − t̂
(r)

x )T β̂
(r)

= t̂(r)y + (t̂Cx − t̂
(r)

x )T β̂
(r)

+ arδr β̂
(r)

◮ Set ar = 1/
√
A, then

V̂ (t̂y ,reg) = A

R∑

r=1

(
t̂(r)y ,reg − t̂y ,reg

)2

consistent for

AVar(t̂y ,reg) = Var(t̂e) + βT
UVar(t̂Cx)βU
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Implementing Fuller (1998) Method (2)

◮ What if the numbers of control totals and replicates differ?
◮ If H ≤ R:

ar =

{ 1
√

A
r = 1, . . . ,H

0 r = H + 1, . . . ,R

◮ If H > R: use δh corresponding to R largest eigenvalues, which
assumes that

R∑

r=1

δhδ
T
h ≈ V̂ (t̂Cx)

(low-rank approximation)

◮ Works for calibration by regression, post-stratification and raking

13



3. Application to APAIS Calibration

◮ 2019 APAIS and FES datasets

◮ Post-stratify APAIS weights to match FES estimated trip totals for
16 states, 2 modes (shore, private boat), 6 waves

⇒ 160 control estimates (R = H)
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3. Application to APAIS Calibration (2)

◮ Distribution of CVs over 160 calibration domains
Mean Min. 1st Qu. Median 3rd Qu. Max.

FES 0.203 0.075 0.169 0.194 0.225 0.702
Trips APAIS (new) 0.203 0.075 0.168 0.193 0.225 0.700

APAIS (old) 0.246 0.070 0.156 0.219 0.294 0.791
Red APAIS (new) 0.620 0.201 0.462 0.654 0.746 1.097
Snapper APAIS (old) 0.607 0.184 0.453 0.541 0.877 1.000
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3. Application to APAIS Calibration (3)
◮ Investigate scenario when H > R

◮ 172 FES controls: estimated trip totals for 17 “states,” 2 modes
(shore, private boat), 6 waves

◮ Use δh of 160 largest eigenvalues of V̂ (t̂Cx)
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3. Application to APAIS Calibration (4)

◮ Distribution of CVs over 172 calibration domains
Mean Min. 1st Qu. Median 3rd Qu. Max.

FES 0.208 0.100 0.171 0.196 0.233 0.702
Trips APAIS (new) 0.207 0.100 0.171 0.195 0.233 0.700

APAIS (old) 0.247 0.081 0.159 0.219 0.291 0.791
Red APAIS (new) 0.631 0.199 0.498 0.633 0.791 1.073
Snapper APAIS (old) 0.607 0.184 0.453 0.541 0.877 1.000

◮ Distribution of CVs over 160 calibration domains
Mean Min. 1st Qu. Median 3rd Qu. Max.

FES 0.203 0.075 0.169 0.194 0.225 0.702
Trips APAIS (new) 0.203 0.075 0.168 0.193 0.225 0.700

APAIS (old) 0.246 0.070 0.156 0.219 0.294 0.791
Red APAIS (new) 0.620 0.201 0.462 0.654 0.746 1.097
Snapper APAIS (old) 0.607 0.184 0.453 0.541 0.877 1.000
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4. Conclusions

◮ Sample-based calibration can be very useful in practice, e.g.
◮ organization conducts multiple surveys and wishes to report

consistent estimates
◮ following changes in survey methodology, survey results are no longer

comparable with previous surveys and need to be adjusted
◮ fixed controls are not available
◮ multi-phase samples

◮ Important to reflect calibration to sample-based controls in measures
of precision

◮ Can be accomplished easily within replication methods for primary
survey

Contact: JeanOpsomer@westat.com
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