Fitting a Bayesian Fay-Herriot Model

Nathan B. Cruze

United States Department of Agriculture National Agricultural Statistics Service (NASS) Research and Development Division

Washington, DC October 25, 2018

Disclaimer

The Findings and Conclusions in This Preliminary Presentation Have Not Been Formally Disseminated by the U.S. Department of Agriculture and Should Not Be Construed to

Represent Any Agency Determination or Policy.

Overview

- ► NASS interest in small area estimation (SAE)
- ▶ The Fay and Herriot (1979) model
- ► Case study: county estimates of planted corn, Illinois 2014
 - Computation in R and JAGS

Small Area Estimation (SAE) Literature

"A domain is regarded as 'small' if the domain-specific sample is not large enough to support [survey] estimates of adequate precision."—Rao and Molina (2015)

Regression and mixed-modeling approaches in SAE literature

- ► Shrinkage—improve estimates with other information
- Utility of auxiliary data as covariate
- Variance-bias trade off

Two common models

- 1. Unit-level models, e.g., Battese et al. (1988)
 - USDA NASS (formerly SRS) as source of data/funding
- 2. Area-level models, e.g., Fay and Herriot (1979)

NASS Interest In SAE

Iwig (1996): USDA's involvement in county estimates in 1917

Published estimates used by:

- Agricultural sector
- Financial institutions
- Research institutions
- Government and USDA

Published estimates used for:

- County loan rates
- Crop insurance
- County-level revenue guarantee

National Academies of Sciences, Engineering, and Medicine (2017)

- Consensus estimates: Board review of survey and other data
- Currently published without measures of uncertainty
- ► Recommends transition to system of model-based estimates

Fay-Herriot (Area-Level) Model

Fay and Herriot (1979)-improved upon per capita income estimates with following model

$$\hat{\theta}_j = \theta_j + e_j, \quad j = 1, \dots, m \text{ counties}$$
 (1)

$$\theta_j = \mathbf{x}_i' \boldsymbol{\beta} + u_j \tag{2}$$

Adding Eqs. 1 and 2

$$\hat{\theta}_j = \mathbf{x}_j' \mathbf{\beta} + \mathbf{u}_j + \mathbf{e}_j$$

- \triangleright $\hat{\theta}_i$, direct estimate
- \triangleright $E(e_i|\theta_i)=0$
- $V(e_j|\theta_j) = \hat{\sigma}_j^2$, estimated variance

- ▶ x_j, known covariates
- $\triangleright u_i$, area random effect
- $\mathbf{u}_j \stackrel{iid}{\sim} (0, \sigma_u^2)$

Fay-Herriot Formulated As Bayesian Hierarchical Model

'Recipe' for hierarchical Bayesian model as in Cressie and Wikle (2011)

Data model:

$$\hat{\theta}_j | \theta_j, \beta \stackrel{ind}{\sim} N(\theta_j, \hat{\sigma}_j^2)$$
 (3)

Process model:

$$\theta_j | \beta, \sigma_u^2 \stackrel{\text{iid}}{\sim} N(\mathbf{x}_j' \beta, \sigma_u^2)$$
 (4)

Prior distributions on β and σ_{μ}^2

- ▶ Browne and Draper (2006), Gelman (2006): $\sigma_u^2 \sim$?
- We will specify $\sigma_u^2 \sim Unif(0, 10^8)$, $\beta \stackrel{iid}{\sim} MVN(\mathbf{0}, 10^6 \mathbf{I})$

Goal: Obtain posterior summaries about county totals, θ_j

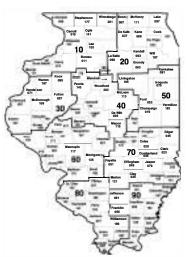
County Agricultural Production Survey (CAPS)

Case study in Cruze et al. (2016)

Illinois planted corn

- 9 Ag. Statistics Districts
- ▶ 102 counties
- a major producer of corn
- End-of-season survey
 - Direct estimates of totals
 - Estimated sampling variances

	Min	Median	Max
n reports CV (%)	2	47	93
CV (%)	9.1	19.2	92.3



https://www.nass.usda.gov/Charts_and_Maps/Crops_ County/indexpdf.php

Covariate x_1 : USDA Farm Service Agency (FSA) Acreage

- FSA administers farm support programs
- Enrollment popular, not compulsory
- Data self-reported at FSA office
- Administrative vs. physical county

 $\label{lem:https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index$

Covariate x₂: NOAA Climate Division March Precipitation

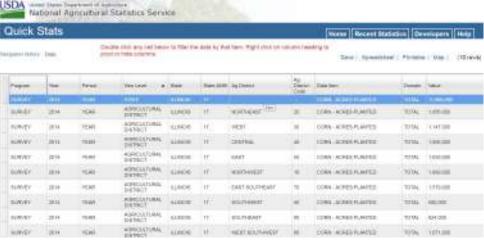
Weather as auxiliary variable	ASD	Precip (in)
► March: Planting 'intentions'	10	1.08
► April: Illinois planting	20	1.35
► Could rainfall in March	30	1.27
affect planting?	40	1.66
, ,	50	1.50
► One-to-one mapping: ASD	60	1.36
and climate division	70	1.46
Repeat value for all counties	80	1.69
within ASD	90	2.00

Source: ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv Details in Vose et al. (2014)

NASS Official Statistics

From prior publication: Illinois 2014, 11.9 million acres of corn planted

Require: State-ASD-county benchmarking of estimates



JAGS Model

```
*** Assume this source saved in C:/Your Directory Name/Your JAGS model.R
    Fimodel (
                                  #Looping over counties, m=102 for Illinois
             for ( | in | in) (
             #Defines 'data model'-note-JAGS uses pracision
                 thetahat[i] ~ dnorm(theta[i], 1/vhat.dir[i])
             *Defines 'process model'
-
                 theta[j] - dnorm[beta0+beta1*X1[j]+beta2*X2[j], sigma2u.inv)
            Priors:
         sigma2u ~ dunif(0, 1008)
3.4
         sigma2u.inv <- pow(sigma2u, -1)
                                               #Again, precision
         beta0~dnorm(0, 0000001)
                                              #Again, precision
         betal~dnorm(0, 0000001)
         beta2~dnorm(0,.000001)
```

- ▶ Note data, process, prior structure from earlier slide
- Note distributions parameterized in terms of precision
- Read into R script as stored R source code or as text string

A Pseudo-Code R Script

```
$4464 Loading some libraries - quasant Tenetioning JEGS installation
library (risgs)
Library (r2 jage)
$8888 Four data import and wrangling go here
##### we'll actually fit a model scaled by 'Wise' on seports!
thetehate-Diring/Sine #888 Survey Estimate
                           $888 Hittingted Survey Vertages
what.dbr<-VarDirInd/91co*
sic-rus norm/wise
                              $155 THE LAKE
#24-bestScom.3
                              #8## 1032 March Provintshive
Debug of light and the second
set.mondCULISE m-CH
                           $450 fet meed, daring number of counties.
9999 raitialine gamples-planeible initial value
$252 for nignal's based on least wpoores.
init sig 4- immery(init im.coef) Ssigns* |
$888 Distinguish date imputs and parameters
jegr.data 4- list ("that abat", "shat dis", "Al", "Al", "a")
lags parame & of there', "algority, "senso", "herent", "herent")
jegs, inits 4- function Office ("elymple" = init, stol ) # ### Function for initial value
6688 Execute model: execute JACS as route code; object returned in an 8-list struct
jagstjags. Hata , jags. inits , jags. parame, "H:/Vinn Birminny Bass/Vinn Jakit mobal B".
   n. chains - 1, s.iter - 10000, n.burain - 1000)
```


Analysis of JAGS Model Output

Posterior summaries of parameters-based on 3,000 saved iterates

► Posterior means, standard deviations, quantiles, potential scale reduction factors, effective sample sizes, pD, DIC

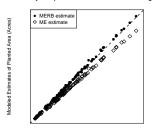
3 chains,	, each with	10000 ite	rations (first 1000	discarded), n.thin =	- 9		
n.sims -	3000 iterat	tions save	4						
	mu.vect	ad.vect	2.5%	25%	50%	75%	97.5%	Rhat	n.ef
betaO	97.024	205.223	-297.362	-39.365	94.004	235.130	492.579	1.002	150
betal	0.865	0.037	0.790	0.891	0.865	0.891	0.937	1.005	83
betsZ	-90.553	118.049	-276.199	-126.387	-98.109	28.315	183,179	1.001	230
sigmaZu	20223.038	11599.892	3252.631	11870.939	18247.001	26419.969	97395.031	1.039	
theta[1]	3399.432	163.965	3083.123	3296.654	3399.326	3505.508	3719.500	1.002	300
hets[2]	1982.413	153.739	1690.704	1885.191	1977.139	2076.279	2302.119	1.001	300
heta[3]	2621.446	149.324	2320.691	2525.084	2620.279	2713.351	2925.278	1.001	300
hets[4]	1296.049	141.511	1014.616	1209.529	1291.823	1383.444	1582.351	1.001	300
theta[5]	3456.315	157.861	3120.367	3359.261	3458,199	3557.000	3759.838	1.002	190

- ▶ Transform back to acreage scale
- ► Ratio benchmarking—inject benchmarking factor back into chains as in Erciulescu et al. (2018)

Results: Models With and Without Benchmarking

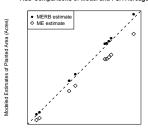
- ▶ Modeled estimates (ME) may not satisfy benchmarking
- Ratio-benchmarked estimates (MERB) are consistent with state targets and improve agreement with external sources

County Comparisons of Model and FSA Acreage



FSA Planted Area (Acres of Corn)

ASD Comparisons of Model and FSA Acreage

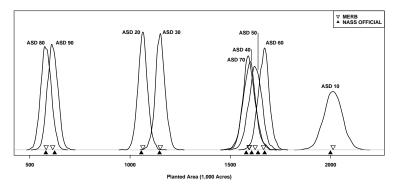


FSA Planted Area (Acres of Corn)

Results: Posterior Distributions of ASD-Level Acreages

Used county-level inputs to produce county-level estimates

- ▶ Idea: derive ASD-level estimates from Monte Carlo iterates
- Sum corresponding draws from county posterior distributions
 - Compute means and variances from aggregated chains



Results: Relative Variability of Survey Versus Model

Obtain estimates and measures of uncertainty for counties and districts

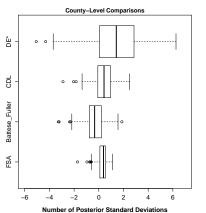
Recall the goal of SAE-increased precision!

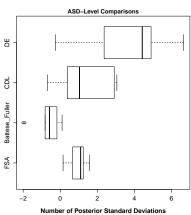
CV (%) of CAPS Survey Estimates							
	Min	Q1	Median	Mean	Q3	Max	
County	9.1	16.6	19.2	22.2	23.5	92.3	
District	4.4	5.6	6.8	6.6	7.2	8.7	
CV (%) of MERB Estimates							
		` ′					
	Min	Q1	Median	Mean	Q3	Max	
County	<i>Min</i> 3.6	<i>Q1</i> 5.6	Median 7.2	Mean 9.0	<i>Q3</i> 10.5	<i>Max</i> 31.2	

Results: Comparison to Other Sources

For counties and districts, compute 'standard score'

- (model estimate-other source)/model standard error
- Direct Estimates, Cropland Data Layer, Battese-Fuller, FSA





Conclusions

Discussed Bayesian formulation of Fay-Herriot model motivated by NASS applications

Other R packages facilitate Bayesian small area estimation

- ▶ 'BayesSAE' by Chengchun Shi
- 'hbsae' by Harm Jan Boonstra
- May be bound by limited choice of prior distributions
- Transformations of data may be needed

Proc MCMC in SAS added 'Random' statement as of version 9.3

Thanks to Andreea Erciulescu (NISS) and Balgobin Nandram (WPI) for three years of adventures in small area estimation!

References

- Battese, G. E., Harter, R. M., and Fuller, W. A. (1988). An error-components model for prediction of county crop areas using survey and satellite data. *Journal of the American Statistical Association*, 83(401):28–36.
- Browne, W. J. and Draper, D. (2006). A comparison of bayesian and likelihood-based methods for fitting multilevel models. *Bayesian Analysis*, 1(3):473–514.
- Cressie, N. and Wikle, C. (2011). Statistics for Spatio-Temporal Data. Wiley, Hoboken, NJ.
- Cruze, N., Erciulescu, A., Nandram, B., Barboza, W., and Young, L. (2016). Developments in Model-Based Estimation of County-Level Agricultural Estimates. In Proceedings of the Fifth International Congress on Establishment Surveys. American Statistical Association, Geneva.
- Erciulescu, A. L., Cruze, N. B., and Nandram, B. (2018). Model-based county level crop estimates incorporating auxiliary sources of information. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*. doi:10.1111/rssa.12390.
- Fay, R. E. and Herriot, R. A. (1979). Estimates of income for small places: An application of james-stein procedures to census data. *Journal of the American Statistical Association*, 74(366):269–277.
- Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian Analysis, 1(3):515–534.
- Iwig, W. (1996). The National Agricultural Statistics Service County Estimates Program. In Schaible, W., editor, Indirect Estimators in U.S. Federal Programs, chapter 7, pages 129–144. Springer, New York.
- National Academies of Sciences, Engineering, and Medicine (2017). Improving Crop Estimates by Integrating Multiple Data Sources. The National Academies Press, Washington, DC.
- Rao, J. and Molina, I. (2015). Small Area Estimation. In Wiley Online Library: Books. Wiley, 2nd edition.
- Vose, R. S., Applequist, S., Squires, M., Durre, I., Menne, M. J., Williams, C. N., Fenimore, C., Gleason, K., and Arndt, D. (2014). Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions. Journal of Applied Meteorology and Climatology, 53(5):1232–1251.

