Evaluation of Strategies to Improve the Utility of Estimates from a Non-Probability Based Survey

Presenter: Benmei Liu, National Cancer Institute, NIH <u>liub2@mail.nih.gov</u>

Authors: (Next Slide)

2015 FCSM Research Conference December 1, 2015

1

Authors (Alphabetic order): A Multi-Agency, Multi-Disciplinary Effort

- National Cancer Institute (NCI), Division of Cancer
 Control and Population Sciences: Erin Kent, Benmei Liu,
 Janet S. de Moor, Gordon Willis, Maggie Wilson, K. Robin
 Yabroff
- Agency for Healthcare Research and Quality (AHRQ): Sadeq R. Chowdhury
- LIVESTRONG Foundation: Stephanie Nutt
- Centers for Disease Control and Prevention (CDC), Division of Cancer Prevention and Control: Donatus Ekwueme, Juan Rodriguez
- *Emory University*: Katherine S. Virgo

Background and Research Goal

Research goal: empirically examine the impact of applying weight adjustments to non-probability-based survey data and compare results to those obtained from a probability-based survey based on a similar questionnaire

Data Source #1: Probability Sample

2011 Medical Expenditure Panel Survey (MEPS) Experiences with Cancer followback survey (CSAQ)

- Self-administered (paper-based) supplement to the core MEPS
- Representative of (18+) US noninstitutionalized household population of cancer survivors
- MEPS full year RR=54.9%; CSAQ RR=90%
- Analytic sample: n = 1,203

Data Source #2: Non-probability Sample

□ 2012 LIVESTRONG Survey

- Same questionnaire as MEPS CSAQ
- Web-based, opt-in, available to cancer survivors via email, social media and newsletters
- Analytic sample (U.S. residents aged 18+ who had ever been diagnosed with cancer at or after age of 17): n= 5,394

Response rate is undefined

Different Weighting Approaches for the LIVESTRONG Sample

- Unweighted
- Sample-based Raking: Adjust LIVESTRONG data to distribution of demographic or other characteristics from MEPS CSAQ
- Propensity Score Adjustment (PSA): Weight data by inverse of estimated propensity to be in the LIVESTRONG sample relative to MEPS (Lee, 2006)
- **PSA + Raking:** *PSA first, then raking (Lee and Valiant 2009, Brick 2015)*

Choices of Weighting Variables

- Four key demographic variables: Age, sex, race/ethnicity, region (same variables used in the core MEPS raking)
- Additional five socio-demographic variables: education, marital status, current employment status, cancer type, years from first diagnosis
- Raking dimensions were formed using either
- the four single variables; or
- the nine single variables; or
- the intersection of age by other variables (e.g., age*sex, age*race/ethnicity, age*sex*employment, etc.)

Table 1a: Estimates for Variables used in Weighting*

	Probability: MEPS									
	CSAQ		Non-Probability: LIVESTRONG							
	n=1,203	Weighted	n=5,394	Unweighted	A (Raked 4 vars)	B (PSA 4 vars)	C (Raked 9 vars)	D (PSA 9 vars)		
	n	%	n	%	%	%	%	%		
Age		-								
18-49	175	13.1	2,075	38.5	13.1	26.0	13.1	27.0		
50-64	390	32.3	2,484	46.1	32.3	38.9	32.3	42.4		
65+	638	54.6	835	15.5	54.6	35.0	54.6	30.5		
Sex										
Male	468	42.5	1,855	34.4	42.5	37.2	42.5	38.1		
Female	735	57.5	3,539	65.6	57.5	62.8	57.5	61.9		
Region										
Northeast	185	16.9	1,079	20.0	16.9	17.8	16.9	17.1		
Midwest	294	23.2	1,181	21.9	23.2	22.4	23.2	22.3		
South	475	40.7	1,698	31.5	40.7	36.7	40.7	36.7		
West	249	19.2	1,436	26.6	19.2	23.0	19.2	24.0		
Race/Ethnicity	Y									
Hispanic, NH black,										
NH Asian	273	12.9	428	7.9	12.9	10.0	12.9	9.4		
Other	930	87.1	4,966	92.1	87.1	90.0	87.1	90.6		

* "PSA+Raking" method gave the same estimates as "Raking" alone for the variables used in weighting

Table 1b: Estimates for Variables used in Weighting*

	Probability: MEPS CSAQ		LIVESTRONG						
					A (Raked 4	В	C (Raked 9	D	
	n=1,203	Weighted	n=5,394	Unweighted	vars)	(PSA 4 vars)	vars)	(PSA 9 vars)	
	n	%	n	%	%	%	%	%	
Education									
High school or less	606	42.8	416	7.7	8.4	8.1	42.8	21.8	
Some college or more	597	57.2	4,978	92.3	91.6	91.9	57.2	78.2	
Marital Status									
Married	641	57.2	3,802	70.5	70.2	70.2	57.2	64.3	
Not married	562	42.8	1,592	29.5	29.8	29.8	42.8	35.7	
Current Employment Stat	us								
Full-time	302	27.1	3,022	56.0	39.3	47.5	27.1	45.6	
Part-time	105	8.8	474	8.8	8.4	8.6	8.8	9.9	
Retired	380	33.8	974	18.1	41.5	29.7	33.8	24.7	
Not employed for									
wages / Other	416	30.4	924	17.1	10.8	14.1	30.4	19.7	
Cancer Type									
Breast	235	17.7	1,636	30.3	27.9	29.7	17.7	24.4	
Prostate	159	14.2	341	6.3	12.0	8.8	14.2	9.9	
Colorectal	59	4.7	328	6.1	6.2	6.1	4.7	4.8	
Multiple	86	6.9	589	10.9	14.5	12.6	6.9	9.3	
Other single cancers	664	56.5	2,500	46.3	39.5	42.9	56.5	51.6	
Years from First Cancer D	K	1	1			· · · · · ·			
<2	129	11.1	1,082	20.1	17.2	18.6	11.1	15.9	
2-5	291	24.3	2,095	38.8	33.9	36.4	24.3	32.7	
6-10	236	18.8	1,137	21.1	22.7	21.8	18.8	20.7	
11+	547	45.7	1,080	20.0	26.2	23.1	45.7	30.7	

*"PSA+Raking" method gave the same estimates as "Raking" alone for the variables used in weighting

Major Outcomes of Interest (11 binary outcomes in total)

- Employment changes (5 outcomes)
- Made work changes since cancer diagnosis (composite measure)
- Took extended paid time off from work because of cancer
- Took unpaid time off from work because of cancer
- Changed from working full-time to part-time because of cancer
- Changed from working part-time to full-time because of cancer
- Financial Burden (6 outcomes)
- Financial impact because of cancer (composite measure)
- Had to borrow money or go into debt because of cancer
- Ever filed for bankruptcy because of cancer
- Made other financial sacrifices because of cancer
- Ever unable to cover share of cancer medical costs
- Ever worry about paying medical bills related to cancer

Estimates: Employment Changes and Financial Burden (11 outcomes)

Different weighting using Age, Sex, Race/Ethnicity, Region

Black diamonds: unweighted; Red dots: weighted

Estimates: Employment Changes and Financial Burden (11 Outcomes)

Different weighting using Age, Sex, Race/Ethnicity, Region + Five Other Variables*

Black diamond: unweighted; Red dots: weighted

Estimates: Employment Changes and Financial Impacts (11 Outcomes)

Different Raking Variables/Dimensions

Black diamond: unweighted; Red dot: weighted

Association Analyses

Run Multivariate logistic regression models

- Two outcomes:
 - Any financial Impact due to cancer
 - Any work change due to cancer
- Predictors included:

Age(3), Sex(2), Education(2), Race/ethnicity(2), Marital Status(2), Region(4), Years from Cancer Diagnosis(4) ➤ Degrees of freedom: 12

• Unweighted and weighted using different set of weights

Table 2: Association Between Variables: Adjusted ORs Dependent Variable: Any financial Impact due to cancer

	MEPS (n=1,203)	LIVESTRONG (n=5,394)			MEPS (n=1,203)	LIVESTRC	ONG (n=5,394)
			Weighted				Weighted
	Weighted	Unweighted	(Raked 4 vars)		Weighted	Unweighted	(Raked 4 vars)
Respondent characteristics	OR (95% CI)	OR (95% CI)	OR (95% CI)	Respondent characteristics	OR (95% CI)	OR (95% CI)	OR (95% CI)
Age group				Marital Status			
18-49	3.41 (2.14 - 5.41)	4.13 (3.44 - 4.96)	3.75 (2.98 - 4.72)	Married	REF	REF	REF
50-64	, ,	2.68 (2.24 - 3.19)	, ,	Not married	1.27 (0.90 - 1.79)	1.46 (1.29 - 1.65)	1.33 (1.09 - 1.63)
65+	REF	REF	REF	Region			
Sex				Northeast	REF	REF	REF
Male	REF	REF	REF	Midwest	1.66 (0.85 - 3.26)	1.14 (0.96 - 1.35)	1.06 (0.80 - 1.40)
Female		1.27 (1.13 - 1.43)		South	2.01 (1.11 - 3.65)	1.54 (1.31 - 1.81)	1.43 (1.11 - 1.85)
Education				West	2.05 (1.05 - 4.02)	1.40 (1.19 - 1.65)	1.36 (1.04 - 1.78)
High school graduate or less	1.04 (0.72 - 1.51)	1.44 (1.16 - 1.77)	1.27 (0.93 - 1.75)	Years from First Cancer DX			
Some college or more	REF	REF	REF	<2	1.69 (0.99 - 2.88)	1.05 (0.88 - 1.25)	1.24 (0.93 - 1.67)
Race/Ethnicity				2-5	1.55 (1.06 - 2.27)	1.05 (0.90 - 1.23)	1.15 (0.90 - 1.47)
Hispanic, NH black, NH Asian	2.21 (1.51 - 3.23)	1.23 (1.00 - 1.53)	1.52 (1.03 - 2.25)	6-10	1.37 (0.86 - 2.20)	1.10 (0.93 - 1.31)	1.27 (0.96 - 1.67)
Other	REF	REF	REF	11+	REF	REF	REF

Association Between Variables: Adjusted ORs

Dependent Variable: Any financial Impact due to cancer

Different weighting using Age, Sex, Race/Ethnicity, Region + Five Other Variables*

Black diamond: unweighted; Red dot: weighted

Association Between Variables: Adjusted ORs Dependent Variable: Any financial Impact due to cancer Different Raking Variables/Dimensions

6 dimensions:

age*sex Age*raceethnic Age*region Age*employment Age*sex*employment Age*marital status

Additional 3 dimensions:

Age*education Age*cancer type Age*yrs since DX

Black diamond: unweighted; Red dot: weighted

Summary and Discussion

For estimation of (absolute) population quantities:

- For our measures of financial burden and employment, estimates from LIVE**STRONG** nonprobability sample, even weighted, were generally <u>not</u> 'close' to those of the **MEPS-CSAQ** probability sample

For associations (relative measures):

- Analysis of associations, via regression analysis, illustrated more similarity between surveys irrespective of weighting methods or no weighting
 Overall:
- Bias due to non-probability sampling may be more of a problem for quantity estimation

Summary and Discussion

- Raking is more efficient than the propensity score weighting approach in terms of reducing bias
- The composite approach (PSA first then raking) may give similar results as raking alone
- Weighting variables and raking dimensions need to be carefully chosen, weighting may introduce more bias depending on the set of weighting variables used
- Raking with carefully chosen variables helps reduce some bias, but not a lot

Limitations

 Mode confounding? MEPS-CSAQ was paper-based, LIVESTRONG a web survey

MEPS contains sampling error

- Implication for control totals (adding additional variances to the LIVESTRONG weighted estimates)
- Some cell sizes are very small
- Challenges in variance estimation

References

- 1. Lee, Sunghee (2006). Propensity score adjustment as a weighting scheme for volunteer panel web surveys. *Journal of Official Statistics* 22(2):329–49.
- Lee, Sunghee, and Richard Valliant (2009). Estimation for volunteer panel web surveys using propensity score adjustment and calibration adjustment. Sociological Methods and Research 37(3):319-43.
- Brick, J. Michael (Sept, 2015). Non-Probability sampling assumptions and methods. Presented at the Washington Statistical Society Seminar on the topic of Non-probability Samples.

Any Questions?

Thank you!

Contact info: Benmei Liu liub2@mail.nih.gov