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Hot Deck Imputation

= Often described as “model free”
= Donors —reported values
= Recipients — missing values
= Recipient and donor are matched
* Direct substitution from donor
Current Month Sales gecipient = Current Month Sales ponor

= Derived from donor

Current Month Sales gecipient =

Current Month Sales ponor

Previous Month Sales .
Previous Month Sales ponor Recipient
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Random Hot Deck

Imputation Cell -
Donors
Assumes MCAR or MAR
when imputation cells are Recipients
used.
=~
Assumes the expected :S Donated
—
value of outcome of
interest is the same for all
observations within the
. : / o
imputation cell. Donated \ N
\
\\ 1 Donated
~ 4
V4
—’,
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Nearest Neighbor Hot Deck

Imputation Cell

Calculate distances based
on auxiliary information

Imputing for this
observation
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Nearest Neighbor Hot Deck

Imputation Cell

‘} Min Distance Donated

(—

Assumes the outcome
variable can be predicted
by the auxiliary variables
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Hot Deck With Business Surveys

= Skewed population
* Direct donation not a good idea for quantitative variables

= Nearest Neighbor often used (size predictive of
response/outcome)

= Derived value — donor ratio
= More recipients than donors

= Seasonal effects/trading day effects
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Propensity
Score Matching

= Background
= Causal inference/causal assumptions

" Predicting outcome variable (response to
treatment due to factors that are common to both
treatment and control)

= Propensity Score

" One single score or combinations of variables
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What About Propensity Scoring?

How do you Compromise What about

develop one between the two important
appropriate score methods continuous
function? variables?

Everything Develop a

into the score No score
score (all within a (block)
variables) block
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How propensity scoring works

= Matching
* Need to specify a distance function.
* Cannot re-use donors (one to one or many to one).

» Greedy matching?
= Pairs donors to recipients sequentially.
= Sort matters (confounding with distance).
= Need to have more donors than recipients to use.

= Optimal matching?

= Pairs donors to recipients based on closest distance subject to
minimizing total aggregated distance over all recipients.

= Distance function matters.

1Used publicly available SAS code developed by Bergstralh and Kosanke at the Mayo Clinic
(http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-
biomedical-statistics-informatics/software/locally-written-sas-macros)
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http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros

Greedy matching _wwm

Recipients sorted in Distance between donor W matched

and Recipient Ais 7 with
Recipient A

ascending sequence

Recipients W
_>A 7 8 5 13

B 10 9 4 6

C 11 17 8 10

D 25 14 7 8
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Greedy matching

Recipients W

A 7
—”B 10

C 11

D 25
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Greedy matching

Recipients
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Greedy matching

Donors
Recipients W X Y VA
A 7 8 5 13
: TR
W

— -
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g —sort matts

Donor W is
matched
with
Recipient A

Recipients sorted in
descending sequence

Donors
Recipients W
D

C
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Optimal matching

Donor X is

matched

with
Recipient A
Donors

Recipients W X

A 7 8 5 13
B 10 9 4 6
C 11 17 8 10
D 25 14 7 8




Relationship between hot deck and
propensity matching

Donors . Donors
(Control) Find donors such that (Control)
Propensity Match —
Recipients Py E[ﬂ] = E[ Xtr ] Hot Deck Imputation Recipients
(Treatment) Xt-1,d Xe-r (Treatment)

Causal inference framework:

 Treatment = donor selection procedure
* Block = imputation cell
e Qutcome = M-T-M change
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Our application - Advance Monthly
Retail Trade Survey (MARTS)

"= Monthly Economic Indicator
= Sales and month-to-month percent change

" |[nputs into the quarterly Gross Domestic Product
(GDP) produced by the Bureau of Economic
Analysis

= MARTS is a subsample of Monthly Retail Trade
Survey (MRTS)

= Certainties — selected with probability = 1
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Sample size

Sample frame

Sample design

Sample redesign

cycle

Timeto respond

| mputation

Estimation

5,000 companies

MRTS sample

Stratified PPS -WOR (subsample

of MRTS)
Approximately every 2.5 years

Approximately 7 business days

Analyst impute for selected
companies

Link relative estimator

Tabulation industries 30
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12,000 companies

Annual Retail Trade Survey
sample

Stratified SRS-WOR

Approximately every 5 years

Approximately 5 weeks

Analyst imputes retained, ratio
impute for remaining
nonrespondents and edit-failing
items

Horvitz-Thompson estimator

83

19



Our application - Advance Monthly Retalil
Trade Survey (MARTS)

" The largest MRTS Certainties are selected with
certainty for MARTS

MARTS
Certainties

= Low Response Rates &
Size is Predictive of Response

= Data are seasonally adjusted

= Seasonal effects
" Trading day effects — many series
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Simulation Study Design

MRTS Certainty Units Source Data:
(Not In MARTS) = |n Statistical Period
MARTS Certainty Units = March 2016 — Feb. 2017

= MRTS Certainty Units ONLY
= Responded to MRTS

= Current Period and Prior
Period

MARTS Noncertainty Units

= Both values of sales >0
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Simulation Study Design

MRTS Certainty Units

(Not In MARTS) - Donors

MARTS Certainty Units — Donors
], Randomly split within
MARTS Certainty Units — Recipients RESHESRECHON

MARTS Noncertainty Units - Recipients
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Relationship between hot deck and
propensity matching

Donors . Donors
(Control) Find donors such that (Control)
— Propensity Match X X ReciD]
Recipients E[ﬁ] ~ E[ﬁ] Hot Deck Imputation ecipients
(Treatment) ’ : (Treatment)

Causal inference framework:

 Treatment = donor selection procedure
* Block = imputation cell
* Qutcome = M-T-M change

What should our match variables be?
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Finding Matching Variables

» What variables are predictive of month-to-

month change?

" Industry — 6-digit NAICS (North American Industry
Classification System) vs 3-digit NAICS
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Distributions of Month-to-Month
Change in NAICS 448

MRTS Respondents: Certainty Cases
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Finding Matching Variables

» What variables are predictive of month-to-
month change?

= Alot is built into the imputation cells

" Industry — 6-digit NAICS (North American Industry
Classification System) vs 3-digit NAICS

= Unit size
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Distributions of Month-to-Month
Change in NAICS 448

MRTS Respondents: Certainty Cases in NAICS 448
By MARTS Certainty and Noncertainty Status

9]

2.0 —
(o]
)
& _
9 ] o o
= |
5 1.5 — O O
@
(=]
©
= o =
o
£ 5 “g 50 g
|
S L
=
> L
=
= (@]
£ 0.5- o
(o]
(o]
| 1 | | | | 1 | |
448110 448120 448130 448140 448150 448190 448210 448310 448320
Industry
|MARTS CERTAINTY [V S |
Cgu't't'edSSﬁtg ll 5 Department of Lommcucc
NOUC S andd Statistics Adomimstratoe
o s - CENSLIS BUREA 27




Finding Matching Variables

" Predictive of m-t-m change

= Alotis built into the imputation cells

" |[ndustry — 6-digit NAICS (North American Industry
Classification System) vs 3-digit NAICS

= Unit size is important — but we are restricted to MRTS
certainty only (historic data limitations)

" Other factors investigated
= Prior month sales (size)
= Sampling weight (size)
= Variables predictive of response
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Actual Matches

= Blocks/Imputation Cells — 6-digit industry

* Matching variables
= Prior month sales

= Number of industries that the company operates
in (proxy for complexity of the company)
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Evaluation
|| |Hotdeck method |MatchVariables ~~ [Sort Variables |
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of Identified Industries for
Reporting Unit

Greedy 1 Random hot deck Random number Random
number
Nearest neighbor Prior Month Sales Random
number
Propensity Prior Month Sales Prior months
sales
(descending)
Propensity Prior Month Sales and Number Random
of Identified Industries for number
Reporting Unit
Propensity Prior Month Sales and Number Prior month
of Identified Industries for sales
Reporting Unit (descending)
Propensity Prior Month Sales N/A
Propensity Prior Month Sales and Number N/A



Evaluation Statistics: Mean
Absolute Error

= Mean Absolute Error (MAE)

(D)

t,d(i
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Imputed
value

measures the average magnitude of the error
per imputed unit.
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Evaluation Statistics: Relative
Bias

= Unconditional Relative Bias( URB) — measures
the overall effect of the imputation error on the
tabulated estimates.
RBgm =% 1
= Conditional Relative Bias (CRB) — provides the
direction of the imputation bias for the imputed
units and gives some indication of the magnitude.

Extremely sensitive to size.

cam(R)
CRB{™ = ————1
t ng

United States” | U.S. Department of Commerce

Census

uuuuuu




Two Phases to our Research

Donors Donors

(Control) Find donors such that (Control)

(Treatment) Xt-14 Xeir ir (Treatment)

* Find which matching = Compare statistical
applications are most performance of the .
effective in selecting recommended matching
donors (imputation algorithm from Phasel
constant) (imputation varied,

= Donated ratio - current matching constant)
month/prior month = Donated ratios from 1 year

ago (seasonality)

= Donated ratios from most
recent calendar with the
same working day
composition (seasonality &
trading day)
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One Match Variable Versus Two

® Chi-square tests for independence
= Treatment = two match variables
= Control = one match variable

" Optimal and Greedy match — no improvement
with two
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Phase 1 Summary

Looking at MAE and CRB
= Random Hot Deck worst performance

" Nearest Neighbor slight underperformance
compared to Optimal and Greedy

" Greedy and Optimal similar performance
= Greedy - needed to “trick” the code

= Phase 2 will focus on Optimal Matching
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Phase 2: Selection of Hot Deck
Donor Pool

Donors (1 Year Ago) to Recipients 0.89 1.69 2.14 3.19 5.58
Donors (5 Years Ago) to Recipients 0.55 0.97 1.38 1.69 2.70
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Phase 2: Chi-Square Test for
Independence to Assess Treatment
Effect (Donor Choice)

Tie between
1 year ago 5 years ago
outperformed | outperformed iz 2
P P treatments
MAE 17 11 2

" Example where p-value is misleading

" There is a an effect overall...but it ignores
differences within industries
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Concluding Remarks

= Optimal matching effective
= Parsimonious model works
" No need for a single score in our application

" Challenge in determining how to use donors
" No one-size-fits-all model with for choosing ratios
» Considering alternative calendar adjustments
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Related Research

= Comparison to other missing data treatments
as part of a larger study
= 10:30 tomorrow morning in 145AB Nikki Czaplicki

is presenting “Finding an Estimator that Minimizes
Revisions in a Monthly Indicator Survey”
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Thank you

Laura Bechtel
Laura.Bechtel@census.gov
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