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Privacy and data sharing

◮ Agencies and companies often seek to share their data.

◮ Protection of individuals’ private information is a must.

◮ Traditional strategies: disclosure control methods

[Hundepool et al., 2012] or releasing synthetic data [Rubin,

1993].

◮ In recent years, agencies are looking for methods that

provide formally quantifiable privacy guarantees, e.g.,

those that rely on differential privacy.



Problem setup

◮ Confidential dataset X =
{

Xi = (X1i , . . . ,Xpi)
}n

i=1
, where

Xij is categorical.

◮ Assume that the agency is willing to release summaries of

X denoted by M(X ) = (M1(X ), . . . ,MT (X )).

◮ The goal is to generate a synthetic version of X using

M(X ) and a formally private mechanism.



Illustration with ACS PUMS

◮ We selected a subset of 10,000 individuals from the 2016

one-year ACS PUMS.

◮ Each Mt(X ), t = 1, . . . , 10, denotes a two-way marginal

table.
Age

Citizenship 0 1

0 11 596

1 443 8950

Race

Citizenship 0 1

0 299 308

1 1731 7662

Sex

Citizenship 0 1

0 273 334

1 4505 4888

Income

Citizenship 0 1

0 294 313

1 2916 6477

Race

Age 0 1

0 110 344

1 1920 7626

Sex

Age 0 1

0 239 215

1 4539 5007

Income

Age 0 1

0 445 9

1 2765 6781

Sex

Race 0 1

0 945 1085

1 3833 4137

Income

Race 0 1

0 827 1203

1 2382 5587

Income

Sex 0 1

0 1281 3497

1 1929 3293



Differential privacy

◮ Differential privacy is the best known formal privacy

framework in use.

◮ M(X ) is a randomized version of M(X ).

Definition
ǫ-Differential Privacy [Dwork et al, 2006]: A randomized

mechanism M satisfies ǫ-differential privacy if for all data sets

X and X ′ differing on at most one row, and S ⊆ Range(M),

Pr[M(X ) ∈ S|X ]

Pr[M(X ′) ∈ S|X ′]
≤ exp(ǫ) .



Differentially private summary statistics

◮ M(X ) = (M1(X ), . . . ,MT (X )) is a randomized version of

M(X ) = (M1(X ), . . . ,MT (X )).

Theorem
Geometric Mechanism [Ghosh et. al, 2012]: For

Mt(X ) : D → Z
dt , the mechanism Mt that adds independently

drawn noise from a two-sided-Geom(exp{ −ǫt

∆Mt
}) distribution to

each of the dt terms of Mt(X ) satisfies ǫt -differential privacy.

◮ Sensitivity ∆Mt = supX ,X ′ ‖Mt(X )− Mt(X
′)‖1.



Illustration with ACS PUMS

◮ Sequential composition [Mcsherry, 2009]: If each Mt

provides ǫt -differential privacy. The sequence of

M(X ) = (M1(X ), . . . ,MT (X )) provides

(ǫ =
∑

t ǫt)-differential privacy. We can use ǫt = ǫ/T .
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Bayesian modeling approach

◮ The released summary statistic is of the form

M(X ) = (M1(X ) + ε1, . . . ,MT (X ) + εT ).

◮ Some counts based on M(X ) will not necessary match.

◮ Ideal modeling approach:

Mt(X )|Mt(X )
ind
∼ two-sided-Geomdt

(

Mt(X ), exp

{

−ǫ

∆MtT

})

,

M(X ) = (M1(X ), . . . ,MT (X ))|θ ∼ pM(·|θ),

θ ∼ pθ.

◮ It is not easy to characterize pM(·|θ).

◮ We know that Mt(X )|θ ∼ Multinomialrt
(n,Pt(θ)).



Bayesian modeling approach using composite

likelihood methods

◮ Proposed modeling approach:

Mt(X )|Mt(X )
ind
∼ two-sided-Geomdt

(

Mt(X ), exp

{

−ǫ

∆MtT

})

,

Mt(X )|θ
ind
∼ Multinomialdt

(n,Pt(θ)), t = 1, . . . ,T ,

θ ∼ pθ.

◮ Notice that the probabilities P1(θ), . . . ,PT (θ) are related.

◮ We can define Pt(θ) by specifying a model for X |θ.



Illustration with ACS PUMS

M1(X ) =

Age

Citizenship 0 1

0 11 596

1 443 8950

P1(θ) =

(

p1,(0,0) p1,(0,1)

p1,(1,0) p1,(1,1)

)

M2(X ) =

Race

Citizenship 0 1

0 299 308

1 1731 7662

P2(θ) =

(

p2,(0,0) p2,(0,1)

p2,(1,0) p2,(1,1)

)

◮ Coherence: p1,(1,0) + p1,(1,1) = p2,(1,0) + p2,(1,1)

◮ We define Pt(θ) by specifying a model for X |θ.



Modeling X |θ

◮ We use the following mixture model [Dunson and Xing 2009]:

Xij |zi , {Ψ
(j)
h }∞h=1

ind
∼ Multinomial{1,Ψ

(j)
zi 1

, . . . ,Ψ
(j)
zi dj

},

zi |{πh}
∞
h=1

ind
∼ Discrete{(1, . . . ,∞), (π1, . . . , π∞)},

πh = Vh

∏

l<h

(1 − Vl), Vh ∼ β(1, α),

Ψ
(j)
h ∼ Dirichlet(aj1, . . . , ajd j

),

where θ =
(

πk = {πh}
k
h=1, Ψk = {Ψ

(j)
h }k ,p

h=1,j=1

)

.



Defining P1(θ), . . . ,PT (θ)

◮ If M1(X ) is the contingency table of the first two variables,

then

P1(θ) =

(

p1,(0,0) p1,(0,1)

p1,(1,0) p1,(1,1)

)

where, e.g.,

p1,(0,0) = Pr(X·1 = 0,X·2 = 0|θ) =
k∑

h=1

πhΨ
(1)
h0

Ψ
(2)
h0

1∑

i=0

1∑

j=0

1∑

l=0

Ψ
(3)
hi

Ψ
(4)
hj

Ψ
(5)
hk

.



Bayesian modeling approach and inference

◮ Proposed approach:

Mt(X )|Mt(X )
ind
∼ two-sided-Geomdt

(

Mt(X ), exp

{

−ǫ

∆MtT

})

,

Mt(X )|θ
ind
∼ Multinomialdt

(n,Pt(θ)), t = 1, . . . ,T ,

θ ∼ pθ.

◮ We use MCMC algorithms to sample from θ|M(X ).

◮ Inferences are performed using (P1(θ), . . . ,PT (θ)) |M(X ).



Bayesian modeling approach and inference

◮ Instead of using M(X )|M(X ), we use M(X S)|M(X ).

◮ To make inferences about the confidential summary, we
use

Pr(X(n+1)1 = c1, . . . ,X(n+1)p = cp|M(X )) =
∫

Pr(X(n+1)1 = c1, . . . ,X(n+1)p = cp|θ)Pr(θ|M(X ))dθ

to generate synthetic datasets X S and induce a

distribution via X S 7→ M(X S).



Illustrations with ACS PUMS

◮ We selected a subset of 10,000 individuals from the 2016

one-year ACS PUMS.

◮ Each Mt(X ), t = 1, . . . , 10, denotes a two-way marginal

table.
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Illustrations with ACS PUMS

◮ True versus estimated two-way marginal tables.
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Illustrations with ACS PUMS

◮ True versus estimated full table.
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Comparisons with existing methods

◮ True versus estimated full table (ǫ = 0.5).
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Concluding remarks

◮ We present a novel method to create differentially private

synthetic data for contingency tables based on marginal

counts.

◮ The simulation results indicate that our approach

preserves the summaries.

◮ The proposed approach is complementary to existing

releasing mechanisms.

◮ Our general strategy can be extended to more complex

data structures.

Thank you!
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