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Abstract 

The Current Employment Statistics (CES) program uses a model to account for the bias in monthly 
payroll employment estimates arising from establishment births and deaths that fall outside the survey 
frame. Actual birth-death values derived from administrative counts are available with a substantial lag 
but must be predicted for the current month's estimation. The existing CES net birth-death model relies 
on the bias from business births and deaths to follow a consistent, seasonal pattern, characterized by an 
ARIMA process. This has broken down during extreme changes in the labor market necessitating 
interventions in the model during the COVID-19 recession and recovery. Previous research showed the 
ARIMA models can be improved by including covariates available coincident with the survey. This paper 
explores several modelling frameworks that use information from the CES survey to predict birth-death 
values, substantially outperforming previously examined models over the period from 2007–2020, 
covering the Great Recession through the pandemic. Forecast combination techniques are also 
examined and compared with predictions from the individual frameworks. 
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1. Introduction 

The Current Employment Statistics (CES) program at the U.S. Bureau of Labor Statistics (BLS) produces 
nonfarm payroll employment, hours, and earnings data each month at the national level, for all 50 
states, the District of Columbia, Puerto Rico, and about 450 metropolitan areas and divisions. National 
level data are typically released on the first Friday following the end of the reference month, 
representing one of the timeliest Principal Federal Economic Indicators, and are closely watched by 
policy makers, markets, and others as a coincident measure of the U.S. economy. 

CES data are produced using a monthly establishment survey but include an adjustment—the net birth-
death forecast—due to the survey’s inability to capture new businesses (“births”) and difficulty 
capturing closures (“deaths”) in real time. BLS can calculate the “actual birth-death value”—the 
adjustment needed to offset this coverage error—but only at a lag of 10-12 months behind the current 
reference period. BLS uses these actual birth-death values as input to a seasonal ARIMA time series 
model forward to the current month. This captures the seasonal pattern in birth-death values but does a 
poor job reflecting business cycle variation since it does not include any real-time information.  

Using concurrent information to predict the actual birth-death values can be considered a “nowcasting” 
problem. Previous work by Battista (2013) showed that covariates derived from the CES survey or other 

 
1 Any opinions expressed in this paper are those of the authors and do not constitute policy of the Bureau of Labor 
Statistics. 



timely economic indicators added to the ARIMA models would have improved predictive accuracy 
during the Great Recession (2007-09). CES used a modified version of this method during the steep 
downturn of the COVID-19 pandemic, but found its impact to be insufficient, and made temporary 
adjustments to the survey estimator to capture the effect of short-term business closures and re-
openings. 

We find that predictions of the actual birth-death values can be substantially improved by using 
information in the CES survey without making changes to the survey estimator. We simulate 44 
individual prediction approaches over the period 2007-2020, many of which give good out-of-sample 
results, and which typically encompass the true birth-death values. This holds over all phases of the 
business cycle including the Great Recession, the ensuing recovery/expansion, and the extreme events 
of the pandemic. We would not have known the best ex post approach ex-ante and all likely suffer from 
some degree of model misspecification. Therefore, we consider forecast combination and find relatively 
simple techniques to work well. 

 

2. Coverage Error from Business Births and Deaths 

The monthly CES survey contains about 122,000 businesses and government agencies representing 
approximately 666,000 establishments reporting positive employment in the current and prior month. 
CES cannot capture births since they are not on the survey frame, the BLS Longitudinal Database (LDB), 
which is derived from the universe of Unemployment Insurance (UI) tax records, available at a lag of 
several months. Deaths are likewise difficult to capture since permanent closures generally result in 
nonresponse, and it is not practicable to determine the status of all nonrespondents during the short 
timeline needed for production. Some closures are reported—often temporary ones, or closures of 
establishments that were part of a multiple worksite employer. 

The CES Net Birth-Death model was introduced as part of a probability-based redesign of the CES survey 
undertaken in the 1990s (Mueller 2006), replacing a bias-adjustment model that accounted for births, 
deaths, and other sources of bias in the previous quota sample. Nonrespondents and those businesses 
that report a closure are implicitly imputed with the sample weighted link relative (equation 1), which 
CES uses to estimate relative employment growth among continuing businesses, calculated within each 
estimating cell (detailed industry2) at time t:  

Equation 1: Weighted Link Relative 

𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 =
∑ 𝑤𝑤𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡𝑛𝑛
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡−1𝑛𝑛
𝑖𝑖=1

 

Where ae represents the number of all employees at establishment i in all n responding establishments 
with aet > 0  and aet-1 >0, and w is the survey weight associated with each reporter. 

This eliminates the need to determine the employment status of nonrespondents and accounts for most 
business births. 

 
2 Basic estimating cells comprise an industry or set of industries defined by the North American Industry 
Classification (NAICS) code, often at the 6-digit NAICS level of detail, sometimes broken out by Census region. 



The historical bias from applying this procedure (i.e., the amount it under- or over-accounts for births) 
can be determined using data from the LDB: the survey estimator is applied to the population from an 
initialization period t=0, representing a March benchmark month, through t=24. The population version 
of the link relative (also calculated at the estimating cell level) is shown in equation 2: 

Equation 2:Population Link Relative 

𝐿𝐿𝐿𝐿𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 =
∑ 𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡𝑁𝑁
𝑖𝑖=1

∑ 𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡−1𝑁𝑁
𝑖𝑖=1

 

For all N population establishments with aet > 0, aet-1 >0, and aet=0 > 0. The establishment must have 
positive employment in the initialization month of the frame, t=0, which removes any births occurring 
since the starting period. No weights are applied since all population establishments with positive 
employment in the current, previous, and initialization months are included. 

Next, the Continuous Plus Imputed (CIMP) series from t=1 to t=24 is derived by applying the population 
link relative to population employment level from t=0: 

Equation 3: Continuous Plus Imputed Series 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝐴𝐴𝐴𝐴𝑡𝑡=0𝐿𝐿𝐿𝐿𝐿𝐿� 𝐿𝐿𝐿𝐿𝑡𝑡=𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑡𝑡

𝑖𝑖=1
 

The difference between LDB employment and the CIMP represents the cumulative birth-death error 
from the initialization month. The actual birth-death values are then calculated as the over-the-month 
change in this residual: 

Equation 4: Birth-Death calculated from LDB 

𝐵𝐵𝐵𝐵𝑡𝑡 = (1 − 𝐵𝐵)(𝐴𝐴𝐴𝐴𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) 

Where B represents the backshift (or lag) operator.3  

Two full years (24 months) of historical birth-death values are calculated from each initialization so that 
birth-death values can be derived for the appropriate age of the sample used in rotation in CES. (In a 
given quarter, the sample frame used for some industries is a year older than in other industries.) 
Several years of BD values calculated from months 1-12 following the initialization period are chained 
together to form a “Year 1” time series, while values from months 13-24 are chained to form a “Year 2” 
series. In practice, there is usually little difference between the Year 1 and Year 2 values; Year 2 tends to 
be slightly more positive than Year 1 in each calendar month/industry. 

Historical values of BDt must be forecast up to 12 months beyond their end date for use in estimation. 
Consider that BDt can be characterized as following a seasonal ARIMA process zt

4 with mean βXt: 

 
3 Bn × Xt = Xt-n 
4 Seasonal ARIMA models of the type examined in this paper are explained in the Reference Manual for X13-
ARIMA-SEATS, Chapter 4: RegARIMA Modelling Capabilities, available at: https://www2.census.gov/software/x-
13arima-seats/x-13-data/documentation/docx13as.pdf  

https://www2.census.gov/software/x-13arima-seats/x-13-data/documentation/docx13as.pdf
https://www2.census.gov/software/x-13arima-seats/x-13-data/documentation/docx13as.pdf


Equation 5: Birth-Death as RegARIMA process 

𝐵𝐵𝐵𝐵𝑡𝑡 = 𝛽𝛽𝑋𝑋𝑡𝑡 + 𝑧𝑧𝑡𝑡 

Where Xt is a matrix of covariates available at time t and β is a vector of coefficients.  

Historically, CES has not included covariates in the model (i.e., Xt is null5), and has assumed a seasonal 
integrated moving average model for zt: 

Equation 6: Birth-Death as Seasonal IMA 

𝐵𝐵𝐵𝐵𝑡𝑡 = 𝑧𝑧𝑡𝑡 =  Θ(𝐵𝐵12)𝑎𝑎𝑡𝑡 (1 −  𝐵𝐵12)⁄  

Where at are white noise. 

Putting everything together, CES employment estimates are created by setting a benchmark population 
employment level and applying the weighted link relative plus birth-death adjustment for successive 
months: 

Equation 7: CES All Employees Estimator 

𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐴𝐴𝐴𝐴𝑡𝑡=0𝑃𝑃𝑃𝑃𝑃𝑃� 𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡=𝑖𝑖 +
𝑡𝑡

𝑖𝑖=1
𝐵𝐵𝐵𝐵𝑡𝑡=𝑖𝑖 

 

The problems addressed in this paper can be considered as determining what to include in Xt, estimating 
β, and forecasting zt.6 We assume that the historical values of BDt derived from the LDB are measured 
precisely and that our task lies in their prediction. There are sources of nonsampling error in both QCEW 
and CES that challenge this assumption. However, the birth-death values applied to CES data provide 
well-centered benchmark revisions when compared to QCEW and improved prediction of the birth-
death values could substantially reduce the size of the benchmark revisions. 

2.1 Relationship between Birth-Death and CES Sample 

Both the actual birth-death values and the CES sample weighed link relative exhibit seasonal, cyclical, 
and irregular time series characteristics. Figure 1 shows both time series of Year 1 birth-death values 
and the weighted link relative at the total private level, standardized by the mean and standard 
deviation of each series prior to 2020. Both series have somewhat similar seasonal patterns, and both 
have a similar cyclical decline during the Great Recession (Dec. 2007 – Jun. 2009). The degree to which 
the sample link and birth-death share similar seasonality varies considerably by component industry. 
They are closely linked in construction and leisure and hospitality, where seasonality is primarily 
weather-driven and there are many small businesses but have little in common in industries such as 
education services, with many larger establishments, and seasonality arising from administrative effects 

 
5 The exception is when additive (point) outliers are included in the X matrix, but these are not known for the 
forecast period. Additive outliers are also described in the X-13ARIMA-SEATS chapter on RegARIMA. 
6 In some models we do allow for nonlinear relationships in which 𝐵𝐵𝐵𝐵𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡) +  𝑧𝑧𝑡𝑡 .  

 



(e.g., the school year). The extreme negative and positive values both series exhibited in 2020 were of 
comparable magnitude and timing. 

Figure 1: Total Private Birth-Death (Year 1) and Weighted Link Relative - Standardized 

  

At a very high level, both birth-death and the sample demonstrate similar cyclical patterns. Table 1 
shows annual sums of actual birth-death Year 1 values and the average sample link relative at the total 
private level. Both showed similar downturns in 2008 and 2009 during the Great Recession, although the 
sample recovered earlier than the birth-death values in 2010-2011.  

Table 1: Year 1 Birth-Death (annual total, thousands) and Weighted Link Relative (annual average) 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

B-D (thousands) 755 278 18 474 606 964 803 880 993 823 908 911 879 75 

Weighted Link 
Relative 1.000 0.997 0.996 1.001 1.001 1.001 1.001 1.002 1.001 1.001 1.001 1.001 1.001 0.995 

 

Note that the weighted link relative never accounts for more than a couple tenths of a percentage point 
of annual growth, while actual net birth-death can account for close to 1 million jobs, or about 7 tenths 
of a percent. (Total private annual employment ranged between about 115 million and 130 million over 
this period.) This aligns with Haltiwanger (2013), which demonstrated that most net job creation 



stemmed from growth in new and young businesses. Much of this growth happens in businesses too 
new for the CES sample to capture. However, information in the CES sample can help predict net job 
growth among new businesses and business closures. 

3. Predicting Actual Birth-Death Values: Simulations 

We simulated birth-death predictions for April 2007 – December 2020 for 3 baseline models, 44 
individual forecasting models, and 6 types of forecast combinations. We accounted for rotation of Year 
1/Year 2 values according to CES sample rotation. 

We considered five categories of approaches for predicting birth-death values: 

1. Baseline ARIMA/RegARIMA 
2. Extended RegARIMA 
3. Partially cross-sectional 
4. Recurrent Neural Networks 
5. Forecast combinations 

Each will be broadly described in this section. 

All models made use of a subset of shared set of covariates based on the CES sample. These included: 

• The sample link relative (WLRt). In some cases, we used the link relative at a higher level of 
industry detail to model at the detailed level. In many cases we took the natural log of the link 
relative, which often gave better diagnostics, but gave similar results in most cases. 

• A measure of reported drops-to and returns-from zero employment in the CES sample. 
• Seasonal dummy variables. 
• Other information about the CES sample, such as the proportion of the sample below a certain 

employment size threshold. 
• Detailed information about the CES sample including the amount of employment by 

establishment size increasing or decreasing within a certain range. 

We produced our models at up to 3 different levels of industry aggregation, each of which we 
considered to be a separate model. CES needs basic industry (up to 6-digit NAICS level) detailed birth-
death values in production. However, we also ran simulations at the 3-digit NAICS and super sector 
(generally 2-digit) level, which can serve as a control for the sum of basic level predictions. (This sort of 
reconciliation is currently done to produce birth-death forecasts at the state and metro area level.) For 
our results, we sum to the super sector or total private and evaluate at that level. 

3.1 Baseline ARIMA/RegARIMA 

We replicated the seasonal ARIMA models that CES has used since the introduction of the net birth-
death models in 2003. We used automatic outlier selection in SAS PROC X13 (SAS 2018) instead of 
outliers selected during a manual review by BLS analysts, so the forecasts in our replication did not 
perfectly match those created in production, but the overall results were similar enough to use as a 
baseline. 



We also replicated the approach from Battista (2013) and a variant that was used in production in 2020. 
This method adds the sample links for each super sector7 to the RegARIMA model estimated at the basic 
level. When the model was applied in 2020, a considerable number of series exhibited negative 
coefficients for the relationship between the sample link and the net birth-death value—two series that 
presumably should move together rather than in opposition. In those cases, and others where modeling 
diagnostics were unacceptable, the seasonal difference was removed from the ARIMA part of the model 
and seasonal dummy variables were added. This usually resulted in predictions very similar to the 
baseline ARIMA, so we substituted with those forecast results under the same conditions. With all 
simulations, in the rare cases where models failed to converge, we substituted with the baseline ARIMA.  

3.2 Extended RegARIMA 

We considered it preferable to use established, easily interpretable models. To that end, we extended 
the use of RegARIMA models. We lengthened our input series as far as possible and used the sample link 
calculated for the same domain we modeled birth-death. Some variants included a measure of reported 
drops-to and returns-from zero as a covariate or added lags of the covariates. 

3.3 Partially Cross-Sectional 

Many of the methods we explored use the following 2-step approach. In the first step, we ignored the 
time series nature of the data and estimated a cross sectional regression relating birth-death to the 
covariates. The residuals from this first step were autocorrelated, so as a second step, we forecasted the 
residuals with a seasonal ARIMA model.  

The primary motivation for this approach follows from the fact that (outside of the COVID-19 pandemic) 
most of the variation in birth-death values and the CES sample is seasonal, that the seasonality is likely 
cointegrated, and that this simple approach gives good out-of-sample results. Our intuition follows 
Barsky and Miron (1989), who found close links between seasonality and the business cycle. We think 
that in many industries, the same causes drive seasonal and business cycle fluctuations in both the 
sample and birth-death. Seasonal differencing or fitting seasonal dummies may result in model 
misspecification if the series are cointegrated. In future work, we would like to thoroughly investigate 
the possible seasonal cointegrating relationships. 

The secondary motivation for this approach was that, in many detailed series, sampling error and other 
noise obscures the relationship between birth-death and the sample link. Pooling information across all 
series was easily handled in this approach but could also be done with multivariate time series models. 

We tried many slightly different approaches within this partially cross-sectional framework. At its 
simplest, we estimated a univariate linear regression with the sample link. Variations included adding 
sets of seasonal dummy variables. We had some success fitting an initial regression, finding some 
structure in the residuals by calendar month, then constructing clustered seasonal dummies for the final 
stage 1 regression8. (E.g., we may form one intercept for Jan., Apr., and Jun., and another for the other 9 
months.) This seemed to strike a balance between setting a full set of seasonal dummies and ignoring 
seasonality all together. We also had some success in the pooled approach constructing many covariates 

 
7 Super sectors are high-level industry combinations, mostly defined at the 2-digit NAICS level of detail, such as 
construction, retail trade, and leisure and hospitality. 
8 This was done by fitting conditional inference trees in the R package party (Hothorn et al. 2023). 



out of the CES sample based on establishment size. The intuition there was that the amount of growth 
or loss among smaller worksites would be closely linked to births and deaths, but the relationship would 
attenuate among larger businesses. 

3.4 Recurrent Neural Networks 

Neural networks have been explored extensively recently in many areas including time series 
forecasting. One such python package created for this purpose is GlutonTS (Alexandrov 2019). We used 
the DeepAR (Deep Autoregressive) model from the GluonTS in our research. A DeepAR model is an 
autoregressive recurrent neural network that is trained on multiple series at once to learn a global 
structure that allows probabilistic forecasts (Salinas 2020). The model allows for the use of covariates 
and multi-horizon forecasts. We used the same covariates as the other methods in this model. 

The motivation for this method is to experiment with newer machine learning methods for time series 
forecasting at BLS. We applied this method with the default settings with moderate success, however 
more experimentation with these models will be needed. 

3.5 Forecast Combination 

Combinations of economic forecasts have long been found to perform well compared with individual 
forecasts, dating back to at least Bates and Granger (1969), who proposed that information available to 
expert forecasters may not be available to the individual forecaster. Forecast combination can also serve 
to make predictions more robust to model misspecification bias—our models are at best rough 
approximations to the true data generating process—which serves as our motivation for combining 
forecasts to predict birth-death (Timmermann 2006).  

We considered two different sets of candidate forecasts for combination:  

• S1: All forecasting models, excluding baseline approaches 
• S2: Partially cross-sectional forecasts without full seasonal dummies (S2 ⊆ S1) 

The reason for the second set is that these approaches did not seem to suffer from the same biases as 
other approaches but individually could be noisy and flawed. 

With each candidate set we investigated three forecast combination approaches for our birth-death 
simulations. The first forecast combination approach is a simple average of the set of candidate 
forecasts (𝑓𝑓𝑖𝑖 ∈ 𝑆𝑆𝑗𝑗): 

Equation 7: Simple Average Forecast Combination 

𝐵𝐵𝐵𝐵�𝑡𝑡
𝑗𝑗 = 𝑁𝑁−1�𝑓𝑓𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖

 

Very often simple averages empirically outperform forecast combinations that attempt to find optimal 
weights, which has become known as the “forecast combination puzzle” (Steel 2020). 

The second approach is from Bates and Granger (1969), which weights based on the error variance of 
the individual forecasts: 



Equation 8: Bates-Granger Forecast Combination 

𝐵𝐵𝐵𝐵�𝑡𝑡
𝑗𝑗 = �𝑤𝑤𝑖𝑖𝐵𝐵𝐵𝐵𝑓𝑓𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖

,𝑤𝑤𝑖𝑖𝐵𝐵𝐵𝐵 =  
𝜎𝜎�𝑖𝑖−2

∑ 𝜎𝜎�𝑗𝑗−2𝑁𝑁
𝑗𝑗=1

  

We estimated the variances based on prior out-of-sample forecast error. (Our first year of simulations 
used equal weights.) 

The third approach uses a sophisticated subset averaging developed by Diebold and Shin (2019), who 
found the best approach in an empirical study was to incorporate principles of selection and 
regularization, discard most forecasts, and use equal weights for the rest. Their approach searches for 
the “best average” combination of N ≤ K candidate forecasts based on prior out-of-sample results. This 
can be very computationally expensive9 and we set K=5.   

4. Results 

We evaluated two different out-of-sample error measures. The first (M1) was a straightforward root 
mean square error measure of the predicted birth-death values evaluated at the super sector level, 
based on an information set containing actual birth-death values 10-12 months behind the end of the 
nowcasting horizon, for each method (j). E.g., we evaluated Jan.-Mar. 2017 predictions with birth-death 
actuals through Mar. 2016 and covariates through Mar. 2017. This mirrors the information CES has 
when producing the initial monthly employment estimates. Results are presented by year as well as 
across all years since data users care about performance across the business cycle. 

Equation 9: RMSE Monthly Birth-Death 

𝑀𝑀1𝑗𝑗 =  �𝑁𝑁𝑡𝑡−1��𝐵𝐵𝐵𝐵�𝑡𝑡,𝑗𝑗 − 𝐵𝐵𝐵𝐵𝑡𝑡�
2

𝑁𝑁𝑡𝑡

𝑡𝑡=1

 

The second measure (M2) relates to the total error in our post-benchmark re-estimates. After setting a 
March benchmark level, CES updates birth-death values for the following 9 months in addition to 
producing initial forecasts for Jan.-Mar. of the following year. We sum the 12 months of predictions and 
actuals to calculate a root mean square error measure evaluated at the total private level. Years are 
designated by the year of the last month being predicted. (E.g., “2015” covers errors in the summed 
birth-death predictions over Apr. 2014 - Mar. 2015.) 

Equation 10: RMSE 12-Mo. Post-Benchmark 

𝑀𝑀2𝑗𝑗 =  �𝑁𝑁𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1 � ���𝐵𝐵𝐵𝐵�𝑡𝑡,𝑗𝑗 − 𝐵𝐵𝐵𝐵𝑡𝑡�
12

𝑚𝑚=1

�

2𝑁𝑁𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦=1

 

Summing by year across all industries is done because errors around business cycle turning points have 
often been correlated across industries for several months in a row. For example, the production birth-
death forecasts covering the worst of the Great Recession were too high broadly across industries over 

 
9 With 44 forecasts and K=5 this requires 1,086,008 combinations evaluated for each super sector, each quarter. 



several months since few new businesses formed during a financial crisis while many closed; forecasts 
were then too low during the ensuing recover/expansion.  

Due to the large number of forecasting models, we present the baseline models, the forecast 
combinations, and results for the five best, median, and worst-performing individual model (evaluated 
across all years). Results for all individual methods can be found in the appendix. 

The version of Battista (2013) with modifications made to the RegARIMA models in 2020 was the best 
baseline approach, which we compared against the alternatives we investigated.  

Under Metric 1 (Table 2), our best ex post individual forecast (N28)—which included zeros and clustered 
seasonal intercepts in the regression—cut the RMSE nearly in half compared to that baseline. Most of 
this gain was achieved in 2020. Nearly all individual methods outperformed the best baseline. The 
simple average and Bates-Granger forecast combinations using the subset of methods (S2) performed 
nearly as well as the best ex post individual. These methods did not perform quite as well as the best ex 
post forecast in 2020 but tended to perform somewhat better in other years. The combinations 
performed well more consistently than any individual approach. Simple averaging and Bates-Granger 
averaging using the full set of individuals (S1) performed only slightly worse than using the subset. The 
Diebold-Shin approach did not perform as well as the other combinations, driven by underperformance 
in 2020. With the extreme volatility that year, a strategy to discard most forecasts and average the rest 
did not work as well. 

Table 2 - RMSE, Super Sector Monthly Birth-Death, Thousands (M1) 

 Method Overall 2008 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 

Ba
se

lin
es

 Production (ARIMA) 27.1 6.9 7.7 6.2 5.4 8.2 4.3 4.4 6.2 7.2 6 4.9 5 95.3 

RegARIMA - Battista 2013 23.2 5.7 6.7 5.8 5.8 8.2 4.3 4.5 6.3 7.3 5.8 5.1 4.9 81.1 

RegARIMA - Battista 2013 (modified) 20.1 5.3 6.4 5.8 5.7 8.2 4.3 4.5 5.9 7.3 5.9 5.1 4.8 69.6 

Co
m

bi
na

tio
ns

 

Simple Avg. (S1) 12.8 5.2 6.1 6.1 6.2 8 4.4 4.3 6.2 7.1 5.7 5.1 5.1 41.3 

Simple Avg. (S2) 10.9 4.7 6.1 6.6 6.8 8.1 4.6 4.4 6.2 7.1 5.7 5.4 5.1 33.2 

Bates-Granger (S1) 12.5 5.2 6.2 6.1 6.3 8 4.4 4.3 6.2 7.1 5.7 5.2 5.1 40.2 

Bates-Granger (S2) 10.9 4.7 6.2 6.7 7 8.1 4.7 4.4 6.2 7.2 5.8 5.4 5.1 33.4 

Diebold-Chen (S1) 15.4 5.2 6.1 6.4 6.5 8.3 4.6 4.4 6.4 7.1 5.7 5.1 5 51.6 

Diebold-Chen (S2) 13.4 4.7 6.2 6 6.3 8.3 4.8 4.5 6.3 7.1 5.7 5.2 5.1 43.8 

In
di

vi
du

al
 F

or
ec

as
ts

 

Rank 1 Individual (N28) 10.7 4.7 6.8 9.3 8.8 8.1 5.2 4.6 6.7 7.3 6.1 5.6 5.5 30.7 

Rank 2 Individual (N31) 11 5 7.4 9.9 9.7 8.2 5.9 4.8 7.3 7.2 6.2 5.6 5.5 31.2 

Rank 3 Individual (N08) 11.1 4.7 6.6 6.2 6.8 8.1 4.5 4.5 6.4 7.2 6.3 5.3 5.5 34.1 

Rank 4 Individual (N11) 11.4 4.7 6.8 6.2 6.9 8.1 4.5 4.5 6.4 7.3 6.2 5.4 5.5 35.2 

Rank 5 Individual (N09) 11.8 4.7 6.4 6.1 6.7 8 4.5 4.5 6.3 7.2 6.1 5.4 5.5 37 

Rank 22 (Median) Individual (B28) 16.2 5.8 6.6 9.2 7.9 8.4 5.3 4.6 7 7.6 5.7 5.7 5.3 53.5 

Rank 44 (Worst) Individual (RNN) 25.1 8.6 10.4 7.9 6.9 8.1 6.8 5.6 7.5 7.8 7.7 7 8.9 86.4 
 

  



Table 3: RMSE, Total Private Post-Benchmark 12-Month Summed Birth-Death, Thousands (M2) 

 Method Overall 2008 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 

Ba
se

lin
es

 Production (ARIMA) 293 179 723 345 157 433 251 222 108 115 149 38 65 257 

RegARIMA - Battista 2013 225 104 486 355 150 297 176 203 72 101 168 55 54 225 

RegARIMA - Battista 2013 (modified) 214 76 416 373 136 301 187 209 62 101 180 63 56 197 

Co
m

bi
na

tio
n 

Simple Avg. (S1) 201 142 398 348 129 252 123 171 67 95 188 58 73 206 

Simple Avg. (S2) 175 106 238 354 210 204 103 151 49 82 191 65 83 176 

Bates-Granger (S1) 199 142 395 342 131 250 124 170 66 98 189 59 73 201 

Bates-Granger (S2) 174 106 222 347 222 200 105 151 48 85 192 65 83 171 

Diebold-Shin (S1) 179 142 226 339 114 259 130 165 68 90 185 39 73 233 

Diebold-Shin (S2) 167 106 175 327 123 239 150 150 55 75 176 47 77 220 

In
di

vi
du

al
 F

or
ec

as
ts

 

Rank 1 Individual (B60) 156 125 105 19 38 278 229 97 61 138 25 83 243 246 

Rank 2 Individual (S09) 161 121 155 309 213 206 88 150 39 101 185 55 105 161 

Rank 3 Individual (S08) 167 98 43 347 291 182 87 141 29 101 189 61 102 152 

Rank 4 Individual (S15) 169 142 167 328 117 244 106 135 22 34 113 9 160 267 

Rank 5 Individual (N11) 172 44 97 415 227 179 58 135 44 103 230 80 46 145 

Rank 22 (Median) Individual (B28) 219 50 479 389 183 193 142 166 105 124 240 125 22 146 

Rank 44 (Worst) Individual (B27) 279 201 685 389 70 326 214 209 131 164 209 92 29 235 
 

Under Metric 2 (Table 3), the best individual methods outperformed the best baseline by over 25 
percent, although the best baseline slightly outperformed the median individual method. The forecast 
combinations using the subset (S2) once again performed comparably to the best ex post individual. In 
this case, the Diebold-Shin averaging performed best. However, due to the way we set up the 
simulations, M2 does not capture much of the pandemic period when Diebold-Shin performed poorly.  

If we shifted the window for M2 to sum the 12 months following each December, instead of following 
the March benchmark, we would better capture the volatility of 2020. In that alternative construction, 
Diebold-Shin performs comparably to the other combination techniques overall since it does worse in 
2020. Overall, our individual methods and forecast combinations tend to show more gain with this 
alternate window. We must note that, had we evaluated the M2 at the super sector level instead of 
total private, we would not have seen a substantial gain against the baseline. Both these alternative 
metrics are reported in the appendix.  

Among the individual methods, one of the very simplest partially cross-sectional approaches (designated 
N11) ranks among the top 5 in both metrics. Its performance is comparable to the better forecast 
combinations. The most complicated partially cross-sectional approach (B60) performs best on the 
second metric and has the practical benefit of being modeled at the basic level. The various RegARIMA 
approaches we tried—adding additional covariates and lags—generally performed worse than the 
partially cross-sectional models but slightly better than the baselines, at least on Metric 1. The DeepAR 
approach fared comparably to the baselines. We only tried one approach in this class of models, without 
contemporaneous information, and we think that it may have more success under different 
formulations, or as the second stage in a partially cross-sectional approach. 



Figure 2 displays cumulative birth-death actual values and predicted values for 5 selected approaches at 
the Total Private level from April 2019 – December 2020. The seasonal ARIMA model does not 
incorporate any concurrent information and predicts birth-death values consistent with historical 
trends—mostly positive. The modified version of RegARIMA models from Battista (2013) improves 
considerably in capturing some of the downturn in Mar.-Apr. 2020. The simple average of S2 provides 
substantially more gain, and the very simple partially-cross-sectional model (N11) and best ex post 
under M1 (N28) predictions track even closer to the actual birth-death values. 

Figure 2: Selected Birth-Death Predictions and Actual Values, Total Private 

  

 

5. Conclusion and future directions 

In this paper, we showed that BLS can improve predictions of the actual birth-death values substantially 
beyond what has been done before using only the CES sample. The largest improvements were 
surrounding the COVID-19 pandemic recession, when BLS needed to make additional methodological 
changes to the estimator to reasonably capture business shutdowns and re-openings, but there were 
also substantial improvements surrounding the Great Recession and the ensuing recovery.  

We found that how a model handles seasonality to be critical to its abilities to relate birth-death to the 
CES sample. Simple models that ignored seasonality and the time series nature of the data in a first step 



fared quite well. Seasonal differencing and the use of seasonal dummies greatly attenuated the 
relationship between birth-death and the sample resulting in worse predictions during turning points. 

Forecast combination provided good results, although considering the set of which forecasts to combine 
mattered. Some individual methods performed about as well across metrics as the combinations, 
although less consistently, and we intend to better understand why. Regardless we think that forecast 
combination will be useful to make predictions more robust to misspecification bias. 

Future work should push to improve the overall birth-death error along the metrics outlined in this 
paper, but also address additional production and data user needs. We think that it is important to test 
the possible cointegrating relationship between the CES sample and birth-death and to investigate 
appropriate models that take this relationship into account. Recurrent Neural Networks remain a 
promising part of the effort to improve birth-death prediction and should be pursued further. The 
impact of prediction methods on various quality metrics (such as the basic level benchmark revisions) 
will need to be fully addressed. Finally, any change to birth-death prediction will need to consider its 
explainability to data users. 
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Appendix 1 – RMSE, Super Sector Monthly Birth-Death, Thousands M1) 

Rank Method Overall 2008 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 

1 N28 (Partially Cross-Sectional) 10.7 4.7 6.8 9.3 8.8 8.1 5.2 4.6 6.7 7.3 6.1 5.6 5.5 30.7 

2 Simple Avg. (S2) 10.9 4.7 6.1 6.6 6.8 8.1 4.6 4.4 6.2 7.1 5.7 5.4 5.1 33.2 

3 Bates-Granger (S2) 10.9 4.7 6.2 6.7 7 8.1 4.7 4.4 6.2 7.2 5.8 5.4 5.1 33.4 

4 N31 (Partially Cross-Sectional) 11 5 7.4 9.9 9.7 8.2 5.9 4.8 7.3 7.2 6.2 5.6 5.5 31.2 

5 N08 (Partially Cross-Sectional) 11.1 4.7 6.6 6.2 6.8 8.1 4.5 4.5 6.4 7.2 6.3 5.3 5.5 34.1 

6 N11 (Partially Cross-Sectional) 11.4 4.7 6.8 6.2 6.9 8.1 4.5 4.5 6.4 7.3 6.2 5.4 5.5 35.2 

7 N09 (Partially Cross-Sectional) 11.8 4.7 6.4 6.1 6.7 8 4.5 4.5 6.3 7.2 6.1 5.4 5.5 37 

8 Bates-Granger (S1) 12.5 5.2 6.2 6.1 6.3 8 4.4 4.3 6.2 7.1 5.7 5.2 5.1 40.2 

9 Simple Avg. (S1) 12.8 5.2 6.1 6.1 6.2 8 4.4 4.3 6.2 7.1 5.7 5.1 5.1 41.3 

10 B08 (Partially Cross-Sectional) 13.1 5.4 6.8 6 5.8 8.5 5 4.5 6.6 7.6 5.7 5.7 5.4 41.9 

11 B11 (Partially Cross-Sectional) 13.1 5.1 6.7 6 5.9 8.6 5.1 4.5 6.6 7.6 5.6 5.7 5.5 41.9 

12 B60 (Partially Cross-Sectional) 13.4 6.9 6.9 7.5 9 11 7.7 7.3 8.6 10 9.3 9.5 7.7 38.2 

13 Diebold-Shin (S2) 13.4 4.7 6.2 6 6.3 8.3 4.8 4.5 6.3 7.1 5.7 5.2 5.1 43.8 

14 S35 (Partially Cross-Sectional) 13.6 5.6 6.1 6.6 6.2 8.1 4.9 4.8 6 7 6.1 5.2 5.1 44.2 

15 S09 (Partially Cross-Sectional) 13.6 5 6.4 6.3 6.9 8 4.9 4.4 6.2 7.3 5.9 5.3 5.3 44.2 

16 B09 (Partially Cross-Sectional) 13.6 5.7 6.9 6 5.8 8.6 5 4.4 6.6 7.5 5.7 5.6 5.3 44.1 

17 S29 (Partially Cross-Sectional) 13.8 5.4 6.4 9.3 8.4 8.1 5.1 4.5 6.2 7.3 5.9 5.4 5.3 44.4 

18 S08 (Partially Cross-Sectional) 13.9 5.6 7.2 7.1 7.3 8.1 4.9 4.5 6.2 7.4 5.9 5.4 5.3 44.9 

19 S12 (Partially Cross-Sectional) 14 6.2 6.6 6.1 6.6 8 4.6 4.4 6.3 7.4 6 5 5.3 45.9 

20 S28 (Partially Cross-Sectional) 14.1 6 7.4 10.2 8.7 8.3 5.6 4.6 6.3 7.3 5.8 5.5 5.3 44.7 

21 S11 (Partially Cross-Sectional) 14.4 5.9 8.2 7.8 7.5 8.1 5.1 4.6 6.3 7.4 5.9 5.4 5.3 46.8 

22 S15 (Partially Cross-Sectional) 15 5.7 6.2 6.6 6.1 8.1 4.8 4.8 6.1 7.2 6.2 5.1 5.2 49.6 

23 B12 (Partially Cross-Sectional) 15 5.9 7.2 5.8 5.8 8.4 4.7 4.7 6.7 7.3 5.7 5.4 5.1 49.8 

24 N12 (Partially Cross-Sectional) 15 5.4 6.5 5.9 6 8 4.2 4.4 6.4 7.3 6 5 5.4 50.1 

25 Diebold-Shin (S1) 15.4 5.2 6.1 6.4 6.5 8.3 4.6 4.4 6.4 7.1 5.7 5.1 5 51.6 

26 B29 (Partially Cross-Sectional) 15.6 6.1 6.8 9.1 7.2 8.4 5.4 4.6 6.7 7.6 5.7 5.6 5.4 51.3 

27 S31 (Partially Cross-Sectional) 15.9 6.4 7.9 11.1 10.9 8.3 6.3 4.8 6.8 7.4 6 5.6 5.4 51.3 

28 B28 (Partially Cross-Sectional) 16.2 5.8 6.6 9.2 7.9 8.4 5.3 4.6 7 7.6 5.7 5.7 5.3 53.5 

29 S10 (Partially Cross-Sectional) 16.9 6.9 7 6.1 6.4 7.9 4.6 4.5 6.4 7.3 5.9 4.9 5.2 57.1 

30 B10 (Partially Cross-Sectional) 17.4 7 7.6 5.8 5.8 8.6 4.8 4.6 6.7 7.4 5.6 5.4 5.1 58.8 

31 N30 (Partially Cross-Sectional) 17.4 6.5 7 8.6 6.3 7.9 4.3 4.5 6.4 7.3 6.2 5 5.3 58.7 

32 S27 (RegARIMA) 17.5 6.3 6.4 6.3 6.6 8 4.6 4.5 6.4 7.2 5.9 4.9 5.1 59.6 

33 S30 (Partially Cross-Sectional) 17.6 6.8 7 7 6.5 8.1 4.6 4.6 6.5 7.3 5.9 5 5.3 59.5 

34 S07 (RegARIMA) 17.8 6.4 6.5 5.9 6.3 7.9 4.6 4.5 6.3 7.2 5.9 4.9 5.1 73.5 

35 N10 (Partially Cross-Sectional) 17.8 6.5 7 6.1 5.9 8.2 4.2 4.5 6.3 7.1 6.1 5 5.4 60.7 

36 N35 (Partially Cross-Sectional) 17.9 5.8 6.3 6.6 6.3 8.3 4.5 4.7 6.2 6.9 6.1 5.3 5.2 61 

37 B30 (Partially Cross-Sectional) 18 6.9 7.6 8.7 7 8.5 4.4 4.6 6.7 7.4 5.7 5.4 5.2 60.7 

38 B31 (Partially Cross-Sectional) 18.2 5.6 6.5 9.5 8.8 8.4 5.8 4.7 7.6 7.6 5.8 5.8 5.4 60.9 

39 B26 (RegARIMA) 18.8 7.8 7.9 6.8 6.9 8.7 4.4 4.3 6.6 7.3 5.7 5.6 5.1 63.8 

40 N27 (RegARIMA) 18.9 6.2 6.7 9.4 6.3 8 4.5 4.5 6.3 7.2 6.1 5 5.3 64.5 



41 S26 (RegARIMA) 19.2 6.8 6.3 6.2 6.1 8.3 4.6 4.5 6.5 7 6.1 5 5.2 65.8 

42 N07 (RegARIMA) 19.4 6.3 6.9 5.9 5.7 8.1 4.3 4.4 6.3 7.2 6 5 5.3 81.1 

43 S06 (RegARIMA) 19.5 6.2 6.5 5.6 6.2 7.9 4.7 4.5 6.5 7 6.1 4.9 5.1 67.1 

44 N26 (RegARIMA) 19.6 6.7 6.7 9.5 6 8.1 4.5 4.6 6.2 7.2 6.3 4.9 5.3 67 

45 N06 (RegARIMA) 19.6 6.7 6.9 5.8 5.7 8 4.4 4.5 6.3 7.2 6.1 4.9 5.4 67.5 

46 B07 (RegARIMA) 19.7 6.5 7.6 6 5.6 8.6 4.7 4.5 6.7 7.3 5.8 5.5 5 67.7 

47 B27 (RegARIMA) 19.8 7.5 7.7 6.7 6.5 8.6 4.5 4.4 6.6 7.2 5.7 5.6 5 67.7 

48 RegARIMA - Battista 2013 (modified) 20.1 5.3 6.4 5.8 5.7 8.2 4.3 4.5 5.9 7.3 5.9 5.1 4.8 69.6 

49 B06 (RegARIMA) 20.3 6.7 7.6 6 5.6 8.5 4.7 4.6 6.7 7.2 6 5.4 5.1 69.9 

50 N15 (Partially Cross-Sectional) 20.4 5.7 6.3 6.4 5.8 8.2 4.4 4.7 6.1 7 6.1 5.1 5.3 70.5 

51 RegARIMA - Battista 2013 23.2 5.7 6.7 5.8 5.8 8.2 4.3 4.5 6.3 7.3 5.8 5.1 4.9 81.1 

52 DeepAR (RNN) 25.1 8.6 10.4 7.9 6.9 8.1 6.8 5.6 7.5 7.8 7.7 7 8.9 86.4 

53 Production (ARIMA) 27.1 6.9 7.7 6.2 5.4 8.2 4.3 4.4 6.2 7.2 6 4.9 5 95.3 

 

Appendix 2 - RMSE, Total Private Post-Benchmark 12-Mo. Summed Birth-Death, Thousands (M2) 

Rank Method Overall 2008 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 

1 B60 (Partially Cross-Sectional) 156 125 105 19 38 278 229 97 61 138 25 83 243 246 

2 S09 (Partially Cross-Sectional) 161 121 155 309 213 206 88 150 39 101 185 55 105 161 

3 S08 (Partially Cross-Sectional) 167 98 43 347 291 182 87 141 29 101 189 61 102 152 

4 Diebold-Shin (S2) 167 106 175 327 123 239 150 150 55 75 176 47 77 220 

5 S15 (Partially Cross-Sectional) 169 142 167 328 117 244 106 135 22 34 113 9 160 267 

6 N11 (Partially Cross-Sectional) 172 44 97 415 227 179 58 135 44 103 230 80 46 145 

7 Bates-Granger (S2) 174 106 222 347 222 200 105 151 48 85 192 65 83 171 

8 Simple Avg. (S2) 175 106 238 354 210 204 103 151 49 82 191 65 83 176 

9 N08 (Partially Cross-Sectional) 176 80 181 409 181 203 85 147 47 99 221 72 45 164 

10 S35 (Partially Cross-Sectional) 177 225 145 340 124 248 105 142 15 31 121 9 160 263 

11 Diebold-Shin (S1) 179 142 226 339 114 259 130 165 68 90 185 39 73 233 

12 S11 (Partially Cross-Sectional) 180 53 116 369 369 134 72 152 24 110 187 62 104 148 

13 N09 (Partially Cross-Sectional) 182 82 248 403 178 211 97 155 57 96 207 80 49 166 

14 S29 (Partially Cross-Sectional) 184 143 192 306 357 194 61 165 46 88 196 64 107 166 

15 S28 (Partially Cross-Sectional) 186 105 87 337 411 178 43 144 43 89 213 66 104 154 

16 N31 (Partially Cross-Sectional) 186 91 113 465 297 119 18 102 64 103 244 83 48 130 

17 N28 (Partially Cross-Sectional) 187 126 214 426 261 152 39 148 71 94 224 72 52 151 

18 Bates-Granger (S1) 199 142 395 342 131 250 124 170 66 98 189 59 73 201 

19 N15 (Partially Cross-Sectional) 200 145 416 271 38 316 139 145 5 24 100 10 133 283 

20 S12 (Partially Cross-Sectional) 200 178 421 298 76 271 109 174 57 87 173 19 105 218 

21 Simple Avg. (S1) 201 142 398 348 129 252 123 171 67 95 188 58 73 206 

22 S31 (Partially Cross-Sectional) 204 43 43 359 537 94 17 142 49 88 226 62 99 127 

23 S06 (RegARIMA) 205 185 454 275 137 253 91 164 41 85 176 19 94 249 

24 S26 (RegARIMA) 209 317 415 270 141 240 49 174 45 86 182 13 90 250 

25 B31 (Partially Cross-Sectional) 211 44 434 393 222 160 138 151 102 122 240 133 14 124 



26 B11 (Partially Cross-Sectional) 211 57 408 386 179 216 158 193 105 124 235 139 22 133 

27 N35 (Partially Cross-Sectional) 213 261 462 281 5 282 135 149 14 17 108 4 133 280 

28 
RegARIMA - Battista 2013 
(modified) 214 76 416 373 136 301 187 209 62 101 180 63 56 197 

29 B28 (Partially Cross-Sectional) 219 50 479 389 183 193 142 166 105 124 240 125 22 146 

30 N12 (Partially Cross-Sectional) 220 148 482 352 77 274 130 185 76 89 202 57 59 235 

31 B08 (Partially Cross-Sectional) 223 76 459 388 158 239 173 198 109 134 239 134 26 146 

32 S07 (RegARIMA) 223 181 521 325 28 304 111 170 60 87 166 20 98 237 

33 RegARIMA - Battista 2013 225 104 486 355 150 297 176 203 72 101 168 55 54 225 

34 S27 (RegARIMA) 226 244 494 326 69 324 107 167 57 86 166 17 98 239 

35 N26 (RegARIMA) 227 261 542 316 43 252 72 188 60 79 164 45 60 250 

36 B09 (Partially Cross-Sectional) 227 86 484 386 130 248 184 203 115 134 237 119 28 162 

37 B29 (Partially Cross-Sectional) 229 92 516 396 151 227 149 165 109 124 229 121 21 169 

38 N06 (RegARIMA) 231 177 566 305 6 299 120 192 52 81 167 48 69 252 

39 S10 (Partially Cross-Sectional) 233 205 563 310 58 303 116 177 67 92 164 8 103 243 

40 N07 (RegARIMA) 236 182 564 321 62 321 149 191 62 74 163 47 70 253 

41 S30 (Partially Cross-Sectional) 240 228 557 324 134 333 115 172 63 92 162 10 101 243 

42 N27 (RegARIMA) 241 197 575 343 1 333 117 191 72 72 158 42 68 251 

43 N10 (Partially Cross-Sectional) 245 194 596 346 29 315 148 189 68 86 185 52 58 246 

44 N30 (Partially Cross-Sectional) 249 208 589 358 93 325 129 194 80 89 185 49 60 252 

45 DeepAR (RNN) 253 83 713 292 56 82 184 105 56 5 147 111 143 343 

46 B12 (Partially Cross-Sectional) 253 97 581 406 56 301 201 209 135 159 217 96 29 206 

47 B26 (RegARIMA) 263 172 670 352 59 304 162 200 103 153 201 80 19 228 

48 B06 (RegARIMA) 265 150 654 352 53 311 211 212 143 157 215 77 21 230 

49 B07 (RegARIMA) 275 129 681 367 31 343 224 203 156 164 209 92 29 235 

50 B30 (Partially Cross-Sectional) 277 119 699 413 29 311 178 214 131 155 207 101 25 230 

51 B10 (Partially Cross-Sectional) 277 129 694 397 15 316 212 218 158 155 207 92 31 220 

52 B27 (RegARIMA) 279 201 685 389 70 326 214 209 131 164 209 92 29 235 

53 Production (ARIMA) 293 179 723 345 157 433 251 222 108 115 149 38 65 257 

 

  



Appendix 3 - RMSE, Total Private 12-Mo. Summed Birth-Death from December, Thousands (M2 - alternate window) 

Rank Method Overall 2008 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 

1 B60 (Partially Cross-Sectional) 147 93 13 15 41 459 52 45 1 124 83 146 98 56 

2 S15 (Partially Cross-Sectional) 150 181 217 259 11 332 10 14 162 52 3 41 70 13 

3 S35 (Partially Cross-Sectional) 154 164 227 263 13 336 8 24 162 57 9 44 71 100 

4 N11 (Partially Cross-Sectional) 156 125 310 234 73 278 12 44 212 73 98 56 21 41 

5 S09 (Partially Cross-Sectional) 156 178 271 222 56 317 22 46 229 38 52 23 9 16 

6 S08 (Partially Cross-Sectional) 160 106 237 295 72 323 6 40 231 46 56 22 3 85 

7 N08 (Partially Cross-Sectional) 165 179 346 197 45 306 27 52 213 64 95 55 17 45 

8 Diebold-Shin (S2) 169 220 260 176 4 353 45 61 196 13 67 25 2 223 

9 Bates-Granger (S2) 169 220 303 244 51 336 31 57 205 37 74 28 6 51 

10 Simple Avg. (S2) 170 220 317 234 46 334 33 57 203 35 73 28 3 72 

11 S11 (Partially Cross-Sectional) 171 14 168 382 129 303 8 32 236 53 54 20 5 179 

12 S29 (Partially Cross-Sectional) 172 174 259 362 80 298 13 54 219 48 67 17 6 30 

13 N09 (Partially Cross-Sectional) 173 225 360 188 44 307 36 63 217 51 92 56 15 97 

14 S28 (Partially Cross-Sectional) 176 117 227 407 94 299 39 49 227 56 81 9 5 87 

15 N28 (Partially Cross-Sectional) 181 220 368 282 86 282 20 68 226 73 90 55 31 4 

16 N31 (Partially Cross-Sectional) 183 166 328 354 107 266 66 52 223 72 107 53 30 128 

17 N35 (Partially Cross-Sectional) 195 389 342 69 57 379 34 44 155 49 22 28 74 195 

18 N15 (Partially Cross-Sectional) 204 371 328 23 77 375 48 24 152 57 10 22 71 335 

19 S31 (Partially Cross-Sectional) 206 24 155 535 193 275 66 37 228 74 90 9 22 240 

20 S12 (Partially Cross-Sectional) 213 369 364 85 23 350 50 84 212 1 42 17 25 368 

21 Bates-Granger (S1) 214 347 377 156 3 362 57 82 214 28 75 37 9 334 

22 Simple Avg. (S1) 217 347 380 155 2 361 58 82 212 26 74 37 6 359 

23 B11 (Partially Cross-Sectional) 221 322 452 147 35 372 107 103 223 80 125 89 53 245 

24 Diebold-Shin (S1) 222 347 281 208 21 357 37 81 216 28 55 24 9 463 

25 S26 (RegARIMA) 224 416 301 169 20 304 20 96 207 12 46 18 7 461 

26 B31 (Partially Cross-Sectional) 225 314 448 265 63 364 89 95 230 72 125 88 63 225 

27 S06 (RegARIMA) 227 433 299 141 8 335 29 84 208 2 43 17 11 454 

28 B08 (Partially Cross-Sectional) 236 357 472 125 33 386 125 105 225 82 130 90 55 314 

29 B28 (Partially Cross-Sectional) 237 344 469 217 34 374 103 100 233 78 130 84 50 311 

30 B09 (Partially Cross-Sectional) 245 380 492 103 19 391 124 114 230 79 131 79 57 339 

31 B29 (Partially Cross-Sectional) 248 386 503 193 5 384 103 111 229 71 124 86 46 327 

32 S07 (RegARIMA) 253 446 403 64 51 365 46 85 215 5 41 16 16 524 

33 S27 (RegARIMA) 254 416 382 111 80 362 39 81 218 6 43 15 15 558 

34 N12 (Partially Cross-Sectional) 258 402 419 93 16 367 77 85 216 28 86 46 8 562 

35 N06 (RegARIMA) 274 514 374 12 0 391 63 86 198 17 82 47 2 597 

36 S30 (Partially Cross-Sectional) 274 458 401 180 84 364 52 88 212 2 33 14 19 616 

37 S10 (Partially Cross-Sectional) 275 491 419 84 48 365 57 93 217 10 36 14 23 606 

38 N26 (RegARIMA) 278 514 335 72 11 360 28 100 197 14 66 49 1 663 

39 RegARIMA - Battista 2013 283 410 338 159 2 399 108 92 212 25 60 70 52 703 

40 N07 (RegARIMA) 290 499 454 9 43 408 92 82 204 21 74 53 5 638 



41 N27 (RegARIMA) 292 504 426 79 101 388 65 88 209 24 65 44 5 664 

42 N10 (Partially Cross-Sectional) 299 515 449 65 42 395 93 87 211 7 79 45 5 681 

43 N30 (Partially Cross-Sectional) 299 525 438 167 94 383 75 97 213 18 70 48 5 668 

44 B12 (Partially Cross-Sectional) 303 433 558 64 33 428 140 158 262 70 107 77 49 607 

45 DeepAR (RNN) 311 572 622 131 61 232 215 97 196 155 35 33 65 590 

46 
RegARIMA - Battista 2013 
(modified) 323 328 360 147 16 408 113 93 213 40 66 60 44 924 

47 B06 (RegARIMA) 337 516 558 25 24 435 132 158 240 56 112 72 45 765 

48 B10 (Partially Cross-Sectional) 339 523 591 24 52 445 156 163 261 60 116 69 45 725 

49 B30 (Partially Cross-Sectional) 339 517 580 100 96 430 139 148 243 66 113 75 31 752 

50 B26 (RegARIMA) 343 581 525 14 79 404 120 128 233 45 97 62 50 801 

51 B07 (RegARIMA) 345 535 578 16 55 458 144 142 249 57 116 72 40 769 

52 B27 (RegARIMA) 351 608 579 36 89 432 136 143 244 54 95 74 41 765 

53 Production (ARIMA) 384 558 587 200 177 492 142 135 226 13 72 61 7 924 

 

Appendix 4 - RMSE, Super Sector Post-Benchmark 12-Mo. Summed Birth-Death, Thousands 

Rank Method Overall 2008 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 

1 Diebold-Shin (S2) 24.3 21.8 33.8 39.2 16.8 26.4 17.5 13.6 7.7 16.9 22.2 16.2 20.5 39.4 

2 Simple Avg. (S2) 25 21.8 37.8 39.9 22.9 27.1 13.8 13.9 7.8 19 28.5 17 20.3 32.1 

3 Diebold-Shin (S1) 25.3 22.2 38.6 39.9 15.7 27.9 16.3 14.9 8.7 18.4 23.4 15.8 20.3 40 

4 Bates-Granger (S2) 25.4 21.8 40.5 39.6 23.9 27 13.9 13.7 7.8 19.5 28.7 17.3 20.6 32 

5 S09 (Partially Cross-Sectional) 25.6 21.8 38.7 36.1 30.9 31.6 14.2 14.9 7.9 20.2 31.9 15.9 19.3 27.3 

6 S15 (Partially Cross-Sectional) 25.8 22 37.7 38.6 23.3 30.8 16.3 13.6 8.1 14.9 21.5 15.4 23.4 42.5 

7 Simple Avg. (S1) 26.1 22.2 46.4 38.4 17.6 28.4 14.3 15.4 8.6 19.6 27.1 16.8 19.8 36.5 

8 Bates-Granger (S1) 26.3 22.2 47.7 38 17.3 28.4 14.3 15.3 8.5 19.8 27.2 17 20 36.2 

9 
RegARIMA - Battista 2013 
(modified) 26.6 15.6 45.3 42 19.7 29.3 20.3 19.2 8.2 21.8 23.6 16.6 16.8 38.6 

10 B31 (Partially Cross-Sectional) 26.8 19.5 49 40.9 23.5 28 14.2 13.7 12.1 22.2 31.2 21 19.6 26.7 

11 S35 (Partially Cross-Sectional) 26.8 36.1 36.7 38.8 23.7 30.5 16.8 13.7 7.9 15 21.9 15.2 23.5 41.2 

12 N09 (Partially Cross-Sectional) 27 22.7 36.3 47.9 25.7 30.9 14.8 14.9 9.7 20.5 31.4 17.8 20 33.3 

13 N15 (Partially Cross-Sectional) 27.2 25 51.1 33.3 20 33.8 15.4 14 6.7 13 16.9 17.9 22.7 44.4 

14 B28 (Partially Cross-Sectional) 27.5 20.7 52.6 40.9 20.7 28.5 14 14.9 11.9 21.8 31.5 20.4 20.8 28.8 

15 S29 (Partially Cross-Sectional) 27.5 31.3 39.5 36.1 41.6 28.9 14.8 15.2 7.9 20.1 32 16.7 19.5 28.5 

16 B11 (Partially Cross-Sectional) 27.5 19.9 47.8 41.4 24.3 25.8 18.1 18.6 11.7 22.9 31.7 20.9 19.2 32.6 

17 N08 (Partially Cross-Sectional) 27.7 25.6 35.4 50.1 25.5 32.1 15.4 14.6 9.8 20.9 32.7 18 19.9 33.5 

18 N11 (Partially Cross-Sectional) 28 23.5 35.6 51.7 28.6 32 16.3 13.9 10.1 21.6 32.8 17.9 19.7 32.5 

19 RegARIMA - Battista 2013 28.1 16.8 54.1 41 21.4 29.2 19.4 18.7 9 21.7 22.2 16.3 16.9 41.9 

20 S06 (RegARIMA) 28.2 23.5 56.8 31.7 29.8 30.5 13.5 15.3 8.2 18.5 27.5 14.9 18.7 39.5 

21 S12 (Partially Cross-Sectional) 28.2 27.2 55.3 32.7 29.6 33.5 14.9 16 9.8 18.7 28.7 15.1 19.8 33.2 

22 N28 (Partially Cross-Sectional) 28.2 28.2 34.9 49.8 31.3 32.6 13.5 14.4 11.1 20.5 33.2 17.5 20.8 32.1 

23 B29 (Partially Cross-Sectional) 28.2 20.4 55.4 41.9 19.6 28.1 14.6 15 11.8 22.2 30.7 19.9 20.7 33.3 

24 B08 (Partially Cross-Sectional) 28.2 19.2 51.8 42.1 23.6 26.4 19.8 19 11.9 22.7 32.2 20.4 19.8 32.2 

25 S26 (RegARIMA) 28.5 37.5 51.7 31.7 30.8 27 15.1 15.8 6.9 17.7 27.6 15.4 18.7 40 



26 S27 (RegARIMA) 28.6 29.5 54.4 36.5 23.4 32.8 14.7 15.8 10.2 19.6 27 14.8 18.7 39.7 

27 S07 (RegARIMA) 28.6 25.2 57.6 36 24.1 32.4 15.4 16 10.2 19 26.9 14.8 18.8 39 

28 N35 (Partially Cross-Sectional) 28.8 41.2 54.1 31 21 31.1 16.7 14.2 6.1 13.8 19.4 16.3 23.3 43.1 

29 B09 (Partially Cross-Sectional) 28.8 19.9 53.3 42.1 22.3 27.5 20.4 19.7 12.2 22.8 31.9 19.8 19.9 34.9 

30 N31 (Partially Cross-Sectional) 28.9 26.7 36.2 53 32.9 32.8 15.2 13.3 11 21.7 34.4 17.7 20.1 31.6 

31 N12 (Partially Cross-Sectional) 29 24.1 55.6 40.1 21.6 33.2 15 17.2 11.1 19.1 28.2 17.2 20.2 39.7 

32 N26 (RegARIMA) 29.1 32.4 60.5 35.7 18.3 26 13.4 17.8 7.5 17.8 24.7 18 19.3 43.1 

33 S08 (Partially Cross-Sectional) 29.1 24.9 50.5 44.2 41.3 29.4 15 14.1 7.9 20.7 32.3 16.3 18.9 27.6 

34 N07 (RegARIMA) 29.6 26.9 62.5 36.6 15.6 32.1 16.2 17.7 8.6 17.4 23.1 18.2 20.8 43.3 

35 N06 (RegARIMA) 29.8 24.7 66 34.7 16 30.5 14.2 18.4 7.6 18 24.7 18.2 20.3 43.4 

36 N27 (RegARIMA) 29.9 26.6 63.6 37.7 19.1 31.6 14.1 17.8 9.2 17.8 22.9 18.2 20.9 43 

37 S28 (Partially Cross-Sectional) 29.9 30 50.7 40.8 47.3 27.6 16.9 13.5 7.9 20.2 32.9 17.2 19 28.5 

38 S10 (Partially Cross-Sectional) 30.6 30.5 66.5 34.2 28.3 33.6 15 16.5 10.6 19 26.7 15.3 19.6 37.6 

39 B12 (Partially Cross-Sectional) 31 22 63 43.7 20.1 30.5 20.5 19.2 14.6 25.7 27.6 18.8 20 40.8 

40 N10 (Partially Cross-Sectional) 31.1 27.7 67.8 39.6 20.4 33.8 16 17.7 9 18.7 25 17.3 20.6 41.5 

41 S30 (Partially Cross-Sectional) 31.1 31.8 66.9 35.5 29.9 34.7 13.7 16 10.3 19.4 26.4 15.2 19.5 38.5 

42 S11 (Partially Cross-Sectional) 31.4 22.3 59.5 47.6 48 27.3 15.5 15 7.8 21.4 32.2 16.6 18.8 27.9 

43 N30 (Partially Cross-Sectional) 31.5 28.5 67.5 40.7 23.8 33.5 14.4 17.6 9.6 18.9 27 17.2 20.3 42.2 

44 S31 (Partially Cross-Sectional) 31.5 29.6 52.5 41.5 56.6 26.2 17.9 13.9 9.3 22.9 33.8 18 18.6 26.8 

45 B26 (RegARIMA) 32.2 28.7 71.2 37.6 19.5 33.2 14.8 18.7 11.4 24.1 26.5 19 20.7 44.2 

46 B06 (RegARIMA) 32.3 24.9 69.6 39.7 20.7 30.6 21.3 19.8 15.6 24.3 27.2 18.3 20.8 44.6 

47 B60 (Partially Cross-Sectional) 32.5 32.8 45 27.9 28.1 25.4 23.6 20.2 24.5 34 26.9 38.7 42.3 40.7 

48 B07 (RegARIMA) 33 24.8 72.2 40.9 18 33.9 22 18.2 16.1 25.3 26.1 19.3 20.2 44.4 

49 B30 (Partially Cross-Sectional) 33.1 24.2 75.2 44.9 15.3 30.9 16.6 19.4 14.3 25.2 26.4 19.5 20.6 43 

50 B10 (Partially Cross-Sectional) 33.1 23.9 73.3 43.7 20.8 31.2 21 19.8 16.8 25.2 26.5 18.6 19 43.2 

51 B27 (RegARIMA) 33.3 30.7 73.5 41.2 18.5 32 20.5 18.8 13.8 25.3 26.1 19.3 20.2 44.4 

52 Production (ARIMA) 33.8 27.3 75.8 37.6 26.5 40.6 25.1 20.4 12.1 23.2 19.7 16 17.2 44 

53 DeepAR (RNN) 34.4 30.3 77.8 38.9 23.7 16.6 24.4 15.5 17 22.3 32.4 18.3 21.7 51 

 


