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Motivating Data Structures

I Data Set with Nested Entities
I Students >> Teachers (class)
I Employees >> Owners (business)
I Patients >> Doctors (hospitals)

I Entities in each level may have
disclosure concerns
I poor performance
I sensitive responses
I competitive advantage
I risk of regulatory intervention
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Motivating Models

I Variance Decomposition
I Attribute % of variability to

group vs. individual factors

yig = µg + εi

µg ∼ N(ν, τ 2)

εi ∼ N(0, σ2)

I PISA 2000: Science Scores (US)

I Average Score (top)
I Between Class Variation (mid)
I Individual Variation (bottom)
I Different estimation methods
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Differential privacy (Dwork et al., 2006)

Let D ∈ Rn×k be a database in input space D. Let M be a randomized mechanism
such that M() : Rn×k → O. Then M is ε-differentially private if

Pr [M(D) ∈ O]

Pr [M(D ′) ∈ O]
≤ exp(ε),

for all possible outputs O = Range(M) under all possible pairs of neighboring

datasets D,D
′
∈ D

- An output statistic f on database D: f (D)

- Global sensitivity ∆ = supD,D′∈D: δ(D,D′ )=1 | f (D)− f (D
′
) |

- Definition of neighborhood - difference of an individual. We will
focus on Leave One Out (LOO).

- Laplace Mechanism for additive noise, scaled to be proportional to
∆G/ε with ε−DP guarantee
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DP or not DP?

Why DP?

I Guarantee is global over all databases and provable.

I DP is property of a probabilistic mechanism. Plausible deniability.

I No explicit assumptions about intruder behaviors or knowledge

I Additivity of privacy guarantee across releases based on worst case
sensitivity (not averaging). Same privacy ‘currency’ for very different
data uses (tables, model output, public use file creation, etc).

I Privacy parameter ε is a finite resource that needs to be budgeted.
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DP or not DP?

Why not DP?

I Worst case sensitivity often ∞. Mechanisms with ε <∞ can be
challenging to prove (or implement).

I In practice assumptions of bounded data space not correct (e.g.
value of sales for a company).

I Supremum (maximum) criteria often severely injures data utility.

I Privacy is not really a single dimension ε and is context-specific.
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The Exponential Mechanism

I Wasserman and Zhou (2010); Zhang et al. (2016); Snoke and
Slavkovic (2018) propose the Exponential Mechanism (EM) to
generate synthetic data with DP properties.

I The EM generates samples from

θ̂ ∝ exp (u(x , θ))π (θ | γ) , (1)

where u(x , θ) is a utility function with bound ∆u, π(θ | γ) is the
“base” distribution to ensure a proper density function (Zhang
et al., 2016; McSherry and Talwar, 2007).

I A single sample θ̂j has a DP guarantee of ε ≤ 2∆u.

I Using a globally bounded u(x , θ) is difficult. Rejection and
Metropolis Hastings sampling do not scale well with the dimension
of θ.

9



The Posterior Mechanism and the Exponential Mechanism

I Consider the log-likelihood function as the utility function, i.e.
u(x , θ) = log (

∏n
i=1 π (xi | θ)) and the prior distribution π(θ | γ) is

the base measure.

I Posterior Mechanism is an instantiation of the Exponential
Mechanism

exp

(
log

(
n∏

i=1

π (xi | θ)

))
π (θ | γ) =

(
n∏

i=1

π (xi | θ)

)
π (θ | γ)

I Sampling from a Posterior is well researched and supported!
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Generalizing the (Exponential and) Posterior Mechanisms

I To reduce ε < 2∆u, modify the utility function u(x, θ).

I Rescale it: u∗(x, θ) = ε
2∆u

u(x, θ) if ∆u <∞. (See McSherry and
Talwar, 2007, among many others).

I Scalar-weighted pseudo-likelihood (posterior)

exp

(
ε log (

∏n
i=1 π (xi | θ))

2∆

)
ξ (θ | γ) =

(
n∏

i=1

π (xi | θ)
ε

2∆

)
π (θ | γ)
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Pseudo Posterior Mechanism

I Savitsky et al. (2019) utilize record-indexed weights, α ∈ (0, 1]n

I To downweight likelihood contributions with high disclosure risk

ξα (θ | x, γ) ∝

[
n∏

i=1

π (xi | θ)αi

]
π (θ | γ)

I αi ∝ 1/ supθ∈Θ | fθ (xi ) |
I Allows surgical downweighting of high risk records

I αi induces an anti-informative prior

I Ensures ∆α <∞
I Expected to better preserve real data distribution for any target

privacy budget, ε
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Extending the Neighborhood

I Leave-one-group-out (LOGO) or delete-a-group (DAG)

I Neighbors D and D ′ differ by an entire group (school, hospital,
business)

I Global sensitivity ∆G = supD,D′∈D: δ(D,D′ )=1G
| f (D)− f (D

′
) |
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Extending to Latent Variables

I Hierarchical Model

[ygi |µg ] ∼ N(µg , σ
2),

[µg |ν] ∼ N(ν, τ2)

with data as response ygi and group indicator 1g and latent group
mean µg .

I The utility function is then (the log of) the integrated likelihood

uG (x , θ) =
G∑

g=1

log

∫ ( ng∏
i=1

f (ygi |µg , σ2)

)
f (µg |ν, τ2) dµg

I We assess the LOO and DAG sensitivities of uG (x , θ) to measure
the individual and group level DP bounds ε.
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Extending the Weighting Approach

Where should we insert the weights?

uAG (x , θ) =
G∑

g=1

αg log

∫ ( ng∏
i=1

f (ygi |µg , σ2)

)
f (µg |ν, τ2) dµg

uBG (x , θ) =
G∑

g=1

log

∫ [( ng∏
i=1

f (ygi |µg , σ2)

)
f (µg |ν, τ2)

]αg

dµg

uCG (x , θ) =
G∑

g=1

log

∫ [( ng∏
i=1

f (ygi |µg , σ2)αgi

)
f (µg |ν, τ2)

]αg

dµg

Option (A) requires us to have analytic integration for estimation. (B)
and (C) allow for data augmentation approaches for estimation. (C)
allows for individual-level tuning.
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Preliminary Simulation Results

I G = 100 groups with ng = 50 individuals

I pg , pgi ∈ [0, 1]: approximate risk measures based on DAG and LOO

I All down-weighting schemes reduce group level sensitivity (Delta)

I Additional (vector) down-weighting of groups αg after vector
down-weighting of individuals αgi - little gain in privacy or utility
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Group Level Sensitivity
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Challenges and Future Work

I Calculating the sensitivities for LOO and DAG require tractable
integrals. Numeric and other approximations might be possible.

I Data augmentation can still be used for parameter generation.

I Most of the gains in privacy seem to come from the individual
weights αgi with little additional gains from αg . We are
investigating this more.

I Group level privacy ε are naturally larger than individual level. While
an acceptable individual level ε might be in [0.1, 10] - its not clear
what the target ε for groups should be [ng/10, 10ng ] = [5, 500]?
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