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SECTION : WHY COMBINED DATA *NORC

Fitness foruse and various aspects of qualty

FCSM 2020 Data Quality Framework

* Three domains, 11 dimensions
Gold standard in-person surveys
* NHIS: National Health Interview Survey; NHANES: National Health and Nutrition Exammation Survey

* Better accuracy due to decades of experience,underlying methods research, higher response rates in
active mterview modes

Online panels

« RANDS: Research and Development Survey; RSS: Rapid Survey System

* Better timeliness (and hence, potentially, relevance) due to faster turnaround times

Variations in granularity, accuracy (specimen mstrumentation in NHANES vs. self-report in NHIS, RSS).

The question of combining the data is that of coherence between sources.


https://www.cdc.gov/nchs/nhis/
https://www.cdc.gov/nchs/nhanes/
https://www.cdc.gov/nchs/rands/index.htm

Methodological considerations



METHODOLOGICAL CONSIDERATIONS : ONLINE PANELS *NORC

Methodological considerations m online panels

* Probability vs. non-probability nature of recruitment

* Sampling frames
— Coverage of the U.S. population

* Panelrefresh frequency
* Panelist interview load / burden

* Retention, incentivization strategies

* Documentation of the above in public-facing documents, on demand, not at all



METHODOLOGICAL CONSIDERATIONS : METRICS

How can one compare the different panels?

*NORC

* Response rates * Panelmamtenance and retainment
 Panel composition, representation of  Weighting methodology
key subpopulations — Complex sampling designs

— Racialand ethnic minorities —
— Young adults —
— Non-English speakers _

e Panelrecruitment
— Coverage

— Protocols

Replenishment
Adjustments for eligibility

Adjustments for nonresponse in
recruitment

Adjustments for nonresponse in
individual surveys

* Transparency

See also: ESOMAR 37 questions

* The European Society for Opinion and Marketing Research

* https://esomar.org/code-and-guidelines/37-questions-to-help-buyers-of-online-samples



https://esomar.org/code-and-guidelines/37-questions-to-help-buyers-of-online-samples

METHODOLOGICAL CONSIDERATIONS : SOURCES OF POTENTIAL BIAS *NORC

Total survey error and sources of biases

* Coverage of the non-Internet population * Main data collection mode effects

— Additional response mode(s) vs. access provision L
* Panel conditioning

* Recruitment mode(s)

: . . * Low quality respondents
— Mixed modes more likely to recruit diverse panels

— Ineligible (e.g. does not reside in the U.S.)
— Cheaters
* Recruitment materials design features — Speeders

— Recruitment mode # data collection mode

o . — Bots
 Within household selection

— Recruitment of every HH member
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COMBINED DATA : PRINCIPAL REFERENCES

Review of reviews

* (Citro (2014)

* Ellott and Vallant (2017)

* Lohr and Raghunathan (2017)
* Rao (2020)

* Yang and Kim (2020)

* Beaumont (2020)

* Wu (2022)

*NORC
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MULTIPLE PROB SOURCES : DUAL FRAME

Dual/multiple frame estimation

* Each source is considered a separate frame
* For each combined data observation, determine (potential) frame membership

« Compositing: ¥, =¥, + ¥4 + (1 - D)YE + 1),
— Optimize A to minimize sampling variance or coverage bias

Vi
Ti.frame 11T Ti;frame 2~ Ti;both

- Single frame: ¥ = Y},

* More than two frames: frame count estimator

Hartley (1962), Kalton and Anderson (1986), Bankier (1986), Lohr (2009)

*NORC
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MULTIPLE PROB SOURCES : REGRESSION AND CALIBRATION *NORC 14

I e
Regression-and
calibration-type methods 4 4 g
’
«
* First survey regression estimator:

Yr =Pur + B'|T; — Zyr|; B= @'WZ) 1 Z'wy

e Second survey adjustment:
Yar =I9r +D'[X —Xg|; D= (Z'RZ)"Z'RY;R=W - WZ(Z'WZ) 1 Z'W

* +1/-1 raking trick

* Empirical likelihood family of approaches

Renssen and Nieuwenbroek (1997), Hidiroglou (2001), Wu (2004), Fu et al. (2008)



MULTIPLE PROB SOURCES : IMPUTATION *NORC Is

-

Survey 1 v v

/

Multiple and mass imputation

 Fit imputation models on survey 1
* Impute inside survey 2

* Rubin’s combine formula:
M 1 M
O =2 s T =22 B+ (1 + M) Zl(ém 81 (8,, — BT
m:

 Complex surveys:

— Subsample survey 1 according to complex survey design per each imputation

— Internal ¥,,, must account for the complex survey design (of survey 2)

Rubin (1976), Shao and Sitter (1996), Raghunathan (2006), Schenker et al. (2010), Kim and
Rao (2012), van Buuren (2018)



MULTIPLE PROB SOURCES : BAYESIAN METHODS

Bayesian methods

Macro-level
* Bayesian updating / combining:

_yi/of +ya/05 1

~N(u,d?) & y,~N(u, d?) = ,Vo~N(u,., d?), u,. = ,02 =
Y1 (u 1) Y2 (u 2) Yelyi ¥a (e, 08), e 1/0‘12+1/O'22 Oc 1/0_12_|_1/0_22

Micro-level

* Modelestimation for survey 2 with priors obtained from survey 1

Erciulescu, Opsomer and Breidt (2021)

*NORC

16



MULTIPLE PROB SOURCES : SAE

Smallarea estimation methods

y; = 0; + sampling error;; ; = x; 8 + model error;
Asymmetric roles of data

e Survey 1 provides covariates for SAEs built on Survey 2

Symmetric roles of data

 Different sources are random area-level effects (possibly with bias)

Raghunathan et al. (2007), Ybarra and Lohr (2008), Kim et al. (2015)

*NORC
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Combining probability and non-
probability surveys



PROB + NONPROB SOURCES : USUAL SUSPECTS

Applicable prob + prob methods

* Superpopulation modeling
* Mass imputation

* Calibration
— Base weights?
— Lasso selection for the outcome model (Chen et al. 2018)

— Behavior variables

*NORC
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PROB + NONPROB SOURCES : SAE

Smallarea estimation methods

Joint detailed domain modeling:
Ya = XgB +vq + &4
y¥P =xiB +vy + )P + alFf

* vVgi-domain model error
. 85, eévp; domain sampling error (estimable)

« alP:systematic error in the low quality source (may have nonzero mean)

Ganesh et al. (2017)

*NORC
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PROB + NONPROB SOURCES : PROPENSITY SCORE METHODS

Propensity score adjustments

* Modelmembership in the non-probability sample (over combined data set):
Pr[6; = 1|x;] = parametric or machine learning model

* Estimating equations:
Xi
Yiesypll —Pi(@)] x; — Xies, wipi(@)x; = 00r Xyeg,p ot dieyXi = 0

* Non-prob sample weights:
— Inverse pseudo-probabilities of inclusion
— Propensity classes / cells
— Weight imputation from PS-matched donors
— Kernel estimates

Kim and Wang (2019), Chen et al. (2020), Wang et al. (2022), Shin et al. (2022)

*NORC
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PROB + NONPROB SOURCES : DOUBLE ROBUST *NORC

Doubly robust methods

Jor =) wi {yi—mG B} + ) wl m(x,f)

LESNP IESP

where m(x;, B) is the model for outcome (parametric or machine learning) and w'? is the
pseudo-weight for the non-probability sample (usually obtained via PS-type methods)

+ If the propensity model is right, ¥;cs. . wi'"" m(x;, ) and Y;cs, wi m(x;, ) cancel one another,
and the estimate is essentially ¥ w/'" v;

» If the outcome model is right, ¢, wP {yi — m(xi,,é)} is zero, and the estimate is essentially
Yiesp Wi m(x;, B)

Chen et al. (2020); Kim and Wang (2019); Valliant (2020); Yang et al. (2020)
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Simulation study



SIMULATION : METHODS AND SCENARIOS

Simulation study

Estimators

* Calibration to standard demographics
* Calibration to demographics + health
e Calibration with lasso selection

* Propensity score

* Double robust

* NORC SAE-type estimator

*NORC

Scenarios for online panels

* SRS
* Mild to strong correctable nonresponse
* Non-correctable nonresponse

* Mild to strong coverage error

24
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