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Disclaimer

This report is released to inform interested parties of ongoing research
and to encourage discussion of work in progress. The views expressed are
those of the authors, and not those of the U. S. Census Bureau.



Decennial Census

According to Abowd (2018), JASON (2020),
I In 2010, the U. S. Census counted a total population of over 308

million people
I At least 7.7 billion statistics were published from the collected data
I At least 25 published statistics per person
I In 2018, Census succeeded in reconstructing, from published 2010

census data, geographic location, sex, age and ethnicity for 46% of
the U. S. population

I Census was able to link 38% of the reconstructed micro data to
information in commercial databases



Differential Privacy

The U. S. Census Bureau will implement differential privacy for the 2020
Census.

A statistic, T , is (ε, δ)-differentially private if for any two data sets X and
X ′ differing by a single element and any A in the range of T ,

P (T (X ) ∈ A) ≤ eεP (T (X ′) ∈ A) + δ

I Laplace noise: (ε, 0)−differentially private
I Gaussian noise: (ε, δ)−differentially private



Consequences of differential privacy

Accuracy/privacy tradeoff
I Published estimates will be noisy
I Fewer estimates may be published

Our research goal: use model-based methods to
I Produce estimates which are more precise than those based on

differentially private measurements
I Produce estimates when no differentially private measurement is

available



Notation

Source support
I Let A1, . . . ,Am be a set of non-overlapping geographies representing

a “source”: Counties in this example
Target support
I Let B1, . . . ,Bn be a second set of geographies representing a

“target”: American Indian and Alaska Native (AIAN) areas in this
example



Notation, continued

I For each area Ai in the source support we assume access to noisy
measurements Z (Ai) of an unobservable true value Y (Ai), as well as
a set of vector of predictors, xT (Ai).

I For each area Bj in the target support, we have only knowledge of a
set of predictors, xT (Bj). We do not have noisy measurements,
Z (Bj), on the target support.

I Our goal is prediction of the true values, Y (Ai) and Y (Bj), on both
the source support and the target support, using the observations
{Z (Ai)}, and the predictors

{
xT (Ai)

}
and

{
xT (Bj)

}
.



Counties and AIAN areas in Oklahoma
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Statistical modeling framework

For a general region, A, the observed noisy measurements Z (A) satisfy

Z (A) = Y (A) + ε(A),

where ε(A) is a draw from a known differentially private distribution and
Y (A) is the unobservable true count.

Assume the true counts, Y (A), can be aggregated from a point-level
process

Y (A) =
∫

A
Y (s)ds,

Further assume that the point-level process can be decomposed as

Y (s) = µ(s) + γ(s)

where µ(s) represents the fixed effects, and γ(s) represents the random
effects, which account for spatial dependencies and residual variation.



Fixed effects

The model for the fixed effects, µ(s), is

µ(s) = xT (s)β,

so that
µ(A) =

∫
A
µ(s)ds =

∫
A

xT (s)βds = xT (A)β.

In our examples, x includes
I An intercept
I The count from the previous census
I The American Community Survey (ACS) 5-year estimate



Random effects

We use a basis expansion for the random process, γ(s) (Cressie and
Johannesson, 2008; Bradley et al., 2017):

γ(s) =
∞∑

k=1
ψk(s)ηk ≈

r∑
k=1

ψk(s)ηk + ξ(s),

where {ψk(s)} is a collection of spatial basis functions, and ηk are
independent, mean-zero Gaussian random variables and ξ(s) is a residual
random effect.

γ(A) =
∫

A

( r∑
k=1

ψk(s)ηk + ξ(s)
)

ds =
r∑

k=1
ψk(A)ηk + ξ(A).



Random coefficients

We assume a multivariate normal distribution for the random effects:

η = (η1, . . . , ηr )T ∼ Nr
(
0, σ2

ηK
)

I K is a known covariance matrix, constructed to induce spatial
dependencies using a conditional autoregressive structure (Hughes
and Haran, 2013)

I σ2
η is an unknown parameter



Construction of K

K is constructed to
I induce spatial dependencies

I reduce rank compared to a conditional auto regressive process

Let
I PX = I − X

(
XT X

)−1 XT

I A the adjacency matrix for counties

I S the first r eigenvectors of PXAPX



Construction of K , continued

Let uT = (u1, . . . , um) be an intrinsic conditional autoregressive process,
with precision matrix 1

σ2 Q, so that

ui | uj , j 6= i , σ2 ∼ N
(∑

j∼i

uj
ni
,
σ2

ni

)
,

where ni is the number of neighbors of area i . Then

K = arg minC
∥∥Q − SC−1ST∥∥

F ,

where the minimization is over the space of r × r positive definite
matrices.



Basis functions

Bisquare basis functions

ψk(s) =
(
1− ‖s − cj‖2

w2

)2

I (‖s − cj‖ < w) .

I (c1, . . . , cr ) is a collection of equally-spaced knots
I w is 1.5 times the minimum distance between any two knots

The integral
ψk(A) =

∫
A
ψk(s)ds

is approximated numerically for each region A. (Bradley et al., 2017;
Pebesma, 2018; Raim et al., 2021)



Source support model

Data model:
Z (Ai) = Y (Ai) + ε(Ai)

Process model:

Y (Ai) = xT (Ai)β +
r∑

k=1
ψk(Ai)ηk + ξ(Ai), i = 1, . . . ,m,

η = (η1, . . . , ηr )T ∼ Nr
(
0, σ2

ηK
)
, ξ (Ai)

i.i.d.∼ N
(
0, σ2

ξ

)
Parameter model:

β ∼ Np (0, 10Ip×p) , σ2
η ∼ IG(1, 1), σ2

ξ ∼ IG(1, 1)

This model can be fit using a Gibbs sampler (Choi and Hobert, 2013).



Change of support

The true count, Y (Bj), in area Bj can be estimated using

Ŷ (Bj) = E
(
Y (Bj) | {Z (Ai)}n

i=1 , x(Bj)
)
.

The covariates xT (Bj) are assumed known, and the basis functions
ψk(Bj) are approximated using numerical integration. The distribution of

[Y (Bj) | Z ] =
∫

θ

[Y (Bj) | θ] [θ | Z ] dθ

can be approximated using the output of the Gibbs sampler for fitting the
source support model.



Example: estimation of the number of Choctaw persons in
counties and AIAN areas in Oklahoma

I Let Y (Ai) be the Census 2010 count of the number of Choctaw
persons in county i in Oklahoma

I Let Y (Bj) be the Census 2010 count of the number of Choctaw
persons in AIAN area j in Oklahoma

I x(s) includes an intercept, the Census 2000 count, and the 2009
ACS 5-year estimate.

I We generate Z (Ai) = Y (Ai) + ε(Ai), where ε(Ai)
i.i.d.∼ Lap(48)

I 1000 data sets were created
I Our goal is estimation of Y (Ai) and Y (Bi) from the observed Z (Ai)
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Estimation of the number of Choctaw persons in counties
in Oklahoma

MOD DP
RMSE 38 68
RMAE 4.5 10.1
MAX 241 346
Coverage 95% 95%

The metrics used are

RMSE =

√√√√ 1
m

n∑
j=1

(
Ŷj − Yj

)2
, RMAE = 1

m

m∑
j=1

(
| Ŷi − Yi |

Yi

)
.

MAX = max
i=1,...,m

∣∣∣Ŷj − Yj

∣∣∣



Estimation of the number of Choctaw persons in counties
in Oklahoma
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Estimation of the number of Choctaw persons in AIAN
areas in Oklahoma

MOD AREAL
RMSE 145 1064
RMAE 0.35 1.97
MAX 592 5631
Coverage 91% NA

Comparison of model-based predictions with simple proportional
allocation (Prener et al., 2019)

Ŷj =
n∑

i=1
Z (Ai)

|Bj ∩ Ai |
|Bj |



Estimation of the number of Choctaw persons in AIAN
areas in Oklahoma
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Questions which need to be addressed

I Sensitivity analyses
I Should we include additional covariates?
I Class of basis functions
I How many basis functions to use?
I Choice of tuning parameters
I How many geographic regions to include in the model?

I Log transformation gives a better fit to some data sets, but doesn’t
allow for change of support

I Test on other data sets
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Thank You!

I ryan.janicki@census.gov
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