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Combine sample with sample

» Improve estimation efficiency with convenience sample
» Non-probability sample inexpensive and easily accessible

» Often has a lot more units than reference probability sample

» Treat convenience sample as from latent random sampling
mechanism:

»> Estimate inclusion probabilities, 7.(x;)

> Use overlap of predictor values (x.;, x,;) and known
reference sample .. (x;)

» Reference and convenience samples

» Exclude convenience units that estimator variance
» Remove convenience units very different from reference

> x.; values very different from x,;
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Terminology

> S.and S, observed and samples
» Population U, and U,
» Target population U°, such that U, C U° and U, C U".
» Known probabilities of U by frames U, and U,
> pe(x;) = P{i eU.li e Uo,xi}
Dr (Xz) = P{Z € U’I‘|7/ € anxi}
> probabilities into S. and S,

| (Xz) = P{Z S S¢|Z S wai}
7 (x;) = P{i € Sy|i € Up,x;}

» Consider combined sample, S = S, + S,
» Indicator z; = 1 whenie S., and z; = 0wheniec S,
> (i) =P{ieS.|i€ S xi}— scores
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The following relationship holds:

T (Xi)pc (Xz)
e (Xi) pe (%i) + 7 (X3) pr (X4) .

Ty (Xl) =

two copies of

uo
%
% Sc % ue

= P{i€S,|icUc,icU° x; } P{icUc|icU° x; } P{icU°icU}

Similarly, P {i € S,|i € U,x;} = 3m. (x:) pr (x1).
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Hence, for units in S = S, + S., we have

=P{ieS)ieUx;}+P{ieS i eUx;}
1

1
= g7 (xi) pe (%) + 5 (i) pr () -

By definition of conditional probability,

P{ie S|ieUx;}
P{’L S S|Z S U,XZ'}

P{ieS.ie€ S,ieUx;}=
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Exact Likelihood Method when U, = U,

> Population Frame for each sampling arm
> pe(x;) =P(i €U, |i€U% =p.(x)

» Produces for
z; ~ Bernoulli(7,(x;)), which allows to implicitly estimate
parameters of 7.(x;, )

» Elliot, 2009 derived the same formula assuming no-overlap
between samples

» S.and S, may be overlapping
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Bayesian Hierarchical Model
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Joint model for [(z;), (7,i)ies. ]

1. Parameterize our model using 7y; = P{i € Sy | i € Uy, x;}.

> Unitiel,....(n=n,+n)
» Sampling arm £ € (r,¢)

» Estimate (my;) for all units for {=rand{=c

2. 10Git(74:) = fhaei = XiVap + Sohes Jens
» B-spline basis for each predictor where C x 1,
C = knots + spline degrees - 1

> smoothing of the C' x 1, By

> over K predictors with 8. ~ N (Beke—1,
3. Joint likelihood for [(z;), (7:)ies.]
> zi| T ind Bernoulli(r;)

. ind . .
> logit(m,;) ™ N (tz.ri, #) Only for units i € S,
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Simulation Performance Study
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Compare Exact and Pseudo Likelihood Methods

» Exact Likelihood Methods (Bayesian Implementation)

> option:
(Se, Sr) 2 ma(xi) = me(xi)/ (e (i) + 7 (%))
> option: (S, U) = m,(x;) = 1: 7. (x;) = 76250

» One-arm gold standard since know whole population of X.

» Pseudo Likelihood Methods (Bayesian Implementation)

» Competitors define likelihood on indicator
> on observed sample using weights « 1/, (x;)
» Chen, P. Li, and Wu (2020) specify Bernoulli (7. (x;)) for
» Wang, Valliant, and Y. Li (2021) specify Bernoulli (7 (x;)) for
- same as
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Data Generation Process

» We generate M = 30 distinct populations of size N = 4000.

» Let X have K = 5 predictors (one continuous)

» QOutcome y; has a lognormal distribution
log(y;) ~ N (x:,2).

» We chose a large sampling fractions to explore the full
range of 7. € [0, 1] (establishment surveys).

> Select reference sample of n,. = 400 using PPS sampling:
s, = log(exp(x;5) + 1)

> Select two convenience samples of n. ~ 800 using Poisson
sampling: 7., = logit™' (x; 3, + offset)

» We control ‘high’ and ‘low’ overlap by varying 5. compared
to the reference sample (next slide)
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High and Low Overlap of X, and X. Datasets

ion Probability
ion Probability
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Figure: 7. versus m,. LHS high overlap and RHS low overlap.
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Higher Percent of Pooled Sample in High Overlap
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Figure: Distributions over 30 population and sample realizations.
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Two-arm Method is More Efficient
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Figure: Avg and 95% frequentist quantiles for posterior mean of .. .
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Coverage degrades for pseudo likelihood options
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Figure: Pointwise coverage comparisons of 90% credibility intervals in
3rd column
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Application to Estimation of Government Employment

>

>

Estimate pseudo weights for quota sample of government
employment.

Use census instrument as reference sample; we set
- = 1 for all units

We observe: z = 1 for units in the quota sample and z =0
for units in the census.

Quota sample units are a of census.

Estimate 7. (x;) of inclusion into the quota sample, where
x; is employment level of unit i

Produce employment estimates for Metropolitan Statistical
Areas (MSAs).
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Weighted Link Relative Estimator (WLR)

12

Yiae = Yao [ [ Rar
=1

> Starting level, Y, ;, available from census at end of year

» Monthly ratio estimates Rdj are obtained using a link
relative (LR) estimator

RiE = Z Yir/ Z Yir—1

€84, 1€84, 7
» We fear LR induces bias by use of (Yir—1:Yir)-
> So, use a LR estimator.
WLR Z wzyz 7'/ Z 'wzyz 7—1

Sd,r 1€Sq,r
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Estimations for Selected MSAs
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Future Work

» Joint estimation of (7., y).
> Create efficient survey estimator for domains.

» Incorporates full uncertainty quantification.
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