Combining Probability and Nonprobability Samples Under Unknown Overlaps

Terrance D. Savitsky ¹ Matthew R. Williams ² Julie Gershunskaya ³ Vladislav Beresovsky ⁴ Nels G. Johnson ⁵

¹ U.S. Bureau of Labor Statistics (Office of Survey Methods Research)
 ²RTI International (Division for Statistical and Data Sciences)
 ³U.S. Bureau of Labor Statistics (OEUS Methods Division),
 ⁴National Center for Health Statistics

⁵USDA Forest Service

FCSM — U.S. BUREAU OF LABOR STATISTICS . October, 2022

Outline

Motivation

Methods

Bayesian Hierarchical Model

Simulation Performance Study

Combine convenience sample with reference sample

- Improve estimation efficiency with convenience sample
 - Non-probability sample inexpensive and easily accessible
 - Often has a lot more units than reference probability sample
- Treat convenience sample as from latent random sampling mechanism:
 - Estimate latent inclusion probabilities, $\pi_c(\mathbf{x}_i)$
 - Use overlap of predictor values $(\mathbf{x}_{ci}, \mathbf{x}_{ri})$ and known reference sample $\pi_r(\mathbf{x}_i)$
 - Reference and convenience samples may overlap units
- Exclude convenience units that inflate estimator variance
 - Remove convenience units very different from reference
 - \mathbf{x}_{ci} values very different from \mathbf{x}_{ri}

Outline

Motivation

Methods

Bayesian Hierarchical Model

Simulation Performance Study

Terminology

- S_c and S_r observed convenience and reference samples
- Population frames U_c and U_r
- Target population U^0 , such that $U_c \subseteq U^0$ and $U_r \subseteq U^0$.
- ▶ Known coverage probabilities of U⁰ by frames U_c and U_r
 ▶ p_c (x_i) = P {i ∈ U_c | i ∈ U⁰, x_i} p_r (x_i) = P {i ∈ U_r | i ∈ U⁰, x_i}
- inclusion probabilities into S_c and S_r

$$\pi_c (\mathbf{x}_i) = P \{ i \in S_c | i \in U_c, \mathbf{x}_i \}$$

$$\pi_r (\mathbf{x}_i) = P \{ i \in S_r | i \in U_r, \mathbf{x}_i \}$$

- Consider combined sample, $S = S_c + S_r$.
- Indicator $z_i = 1$ when $i \in S_c$, and $z_i = 0$ when $i \in S_r$

►
$$\pi_z(i) = P\{i \in S_c \mid i \in S, \mathbf{x}_i\} \rightarrow \text{propensity scores}$$

Proposition: The following relationship holds:

$$\pi_{z}\left(\mathbf{x}_{i}\right) = \frac{\pi_{c}\left(\mathbf{x}_{i}\right)p_{c}\left(\mathbf{x}_{i}\right)}{\pi_{c}\left(\mathbf{x}_{i}\right)p_{c}\left(\mathbf{x}_{i}\right) + \pi_{r}\left(\mathbf{x}_{i}\right)p_{r}\left(\mathbf{x}_{i}\right)}.$$

Proof: two copies of U^0 : $U = U^0 + U^0$.

 $P\left\{i \in S_c | i \in U, \mathbf{x}_i\right\} = P\left\{i \in S_c | i \in U_c, i \in U^0, \mathbf{x}_i\right\} P\left\{i \in U^0, \mathbf{x}_i\right\} P\left\{i \in U^0 | i \in U\right\}$ $= \frac{1}{2} \pi_c \left(\mathbf{x}_i\right) p_c \left(\mathbf{x}_i\right)$

Similarly, $P\left\{i \in S_r | i \in U, \mathbf{x}_i\right\} = \frac{1}{2}\pi_r\left(\mathbf{x}_i\right) p_r\left(\mathbf{x}_i\right)$.

Hence, for units in $S = S_r + S_c$, we have

$$P\left\{i \in S | i \in U, \mathbf{x}_i\right\} = P\left\{i \in S_c | i \in U, \mathbf{x}_i\right\} + P\left\{i \in S_r | i \in U, \mathbf{x}_i\right\}$$
$$= \frac{1}{2}\pi_c\left(\mathbf{x}_i\right) p_c\left(\mathbf{x}_i\right) + \frac{1}{2}\pi_r\left(\mathbf{x}_i\right) p_r\left(\mathbf{x}_i\right).$$

By definition of conditional probability,

$$P\left\{i \in S_c | i \in S, i \in U, \mathbf{x}_i\right\} = \frac{P\left\{i \in S_c | i \in U, \mathbf{x}_i\right\}}{P\left\{i \in S | i \in U, \mathbf{x}_i\right\}}$$

Exact Likelihood Method when $U_c = U_r$

Same Population Frame for each sampling arm

$$\blacktriangleright p_c(\mathbf{x}_i) = P(i \in U_c \mid i \in U^0) = p_r(\mathbf{x}_i)$$

$$\pi_{z}\left(\mathbf{x}_{i}\right) = \frac{\pi_{c}\left(\mathbf{x}_{i}\right)}{\pi_{c}\left(\mathbf{x}_{i}\right) + \pi_{r}\left(\mathbf{x}_{i}\right)}$$

- Produces exact likelihood for observed data
 - $z_i \sim \text{Bernoulli}(\pi_z(\mathbf{x}_i))$, which allows to implicitly estimate parameters of $\pi_c(\mathbf{x}_i, \beta)$
- Elliot, 2009 derived the same formula assuming no-overlap between samples
- S_c and S_r may be overlapping

Outline

Motivation

Methods

Bayesian Hierarchical Model

Simulation Performance Study

Joint model for $[(z_i), (\pi_{ri})_{i \in S_r}]$

- 1. Parameterize our model using $\pi_{\ell i} = P\{i \in S_{\ell} \mid i \in U_{\ell}, \mathbf{x}_i\}.$
 - Unit $i \in 1, \ldots, (n = n_r + n_c)$
 - Sampling arm $\ell \in (r, c)$
 - Estimate $(\pi_{\ell i})$ for all units for both $\ell = r$ and $\ell = c$
- 2. logit $(\pi_{\ell i}) = \mu_{x,\ell i} = \mathbf{x}_i \gamma_{x,\ell} + \sum_{k=1}^{K} g(x_{ki}) \beta_{\ell k}$ B-spline basis for *each* predictor where $C \times 1$, $g(x_{ki})$, with C = knots + spline degrees - 1
 - Autoregressive smoothing of the $C \times 1$, $\beta_{\ell k}$
 - Sparsity over K predictors with $\beta_{\ell kc} \sim \mathcal{N}\left(\beta_{\ell kc-1}, \kappa_{\ell k} \tau_{\ell}\right)$
- **3**. Joint likelihood for $[(z_i), (\pi_{ri})_{i \in S_c}]$

 $\triangleright z_i \mid \pi_{zi} \overset{\text{ind}}{\sim} \mathsf{Bernoulli}(\pi_{zi})$

Outline

Motivation

Methods

Bayesian Hierarchical Model

Simulation Performance Study

Compare Exact and Pseudo Likelihood Methods

Exact Likelihood Methods (Bayesian Implementation)

• Two-arm option: $(S_c, S_r) : \pi_z(\mathbf{x}_i) = \pi_c(\mathbf{x}_i) / (\pi_c(\mathbf{x}_i) + \pi_r(\mathbf{x}_i))$

• One-arm option: $(S_c, U) \rightarrow \pi_r(\mathbf{x}_i) = 1$: $\pi_z(\mathbf{x}_i) = \frac{\pi_c(\mathbf{x}_i)}{\pi_c(\mathbf{x}_i)+1}$

One-arm gold standard since know whole population of X.

Pseudo Likelihood Methods (Bayesian Implementation)

- Competitors define likelihood on population indicator
- Approximate on observed sample using weights $\propto 1/\pi_r(\mathbf{x}_i)$
 - Chen, P. Li, and Wu (2020)(LCW) specify Bernoulli $(\pi_c(\mathbf{x}_i))$ for pop
 - Wang, Valliant, and Y. Li (2021) (WVL) specify Bernoulli (π_z(x_i)) for pop - same as One-arm

Data Generation Process

- We generate M = 30 distinct populations of size N = 4000.
 - Let X have K = 5 predictors (one continuous)
 - Outcome y_i has a lognormal distribution $\log(y_i) \sim \mathcal{N}(\mathbf{x}_i \beta, 2).$
- ▶ We chose a large sampling fractions to explore the full range of $\pi_c \in [0, 1]$ (establishment surveys).
 - Select reference sample of $n_r = 400$ using PPS sampling: $s_{r_i} = \log(\exp(\mathbf{x}_i\beta) + 1)$
 - Select two convenience samples of n_c ≈ 800 using Poisson sampling: π_{ci} = logit⁻¹(x_iβ_c + offset)
 - We control 'high' and 'low' overlap by varying β_c compared to the reference sample (next slide)

High and Low Overlap of X_r and X_c Datasets

Figure: π_c versus π_r LHS high overlap and RHS low overlap.

Higher Percent of Pooled Sample in High Overlap

Figure: Distributions over 30 population and sample realizations.

Two-arm Method is More Efficient

Figure: Avg and 95% frequentist quantiles for posterior mean of π_c .

BLS16/ 22

Coverage degrades for pseudo likelihood options

- two-arm ---- CLW --- CLW-A -- WVL --- WVL-A

Figure: Pointwise coverage comparisons of 90% credibility intervals in 3rd column

Application to Estimation of Government Employment

- Estimate pseudo weights for quota sample of government employment.
- Use census instrument as reference sample; we set $\pi_{ri} = 1$ for all units
- We observe: z = 1 for units in the quota sample and z = 0 for units in the census.
- Quota sample units are a subset of census.
- Estimate π_c (x_i) of inclusion into the quota sample, where x_i is employment level of unit i
- Produce employment estimates for Metropolitan Statistical Areas (MSAs).

Pseudo Weighted Link Relative Estimator (WLR)

$$\hat{Y}_{d,12} = Y_{d,0} \prod_{\tau=1}^{12} \hat{R}_{d,\tau}.$$

Starting level, $Y_{d.0}$, available from census at end of year

• Monthly ratio estimates $\hat{R}_{d,\tau}$ are obtained using a link relative (LR) estimator

$$\hat{R}_{d,\tau}^{LR} = \sum_{i \in s_{d,\tau}} y_{i,\tau} / \sum_{i \in s_{d,\tau}} y_{i,\tau-1}$$

• We fear LR induces bias by use of unweighted $(y_{i,\tau-1}, y_{i,\tau})$.

- U.S. BUREALLOF L

$$\hat{R}_{d,\tau}^{WLR} = \sum_{\substack{i \in s_{d,\tau} \\ \text{ABOR STATISTICS } \bullet \text{ bis.gov}}} w_i y_{i,\tau} / \sum_{i \in s_{d,\tau}} w_i y_{i,\tau-1}$$

Estimations for Selected MSAs

Future Work

- ► Joint estimation of (π_c, y) .
- Create efficient survey estimator for domains.
- Incorporates full uncertainty quantification.

References I

- Chen, Yilin, Pengfei Li, and Changbao Wu (2020). "Doubly Robust Inference With Nonprobability Survey Samples". In: *Journal of the American Statistical Association* 115.532, pp. 2011–2021.
- Elliot, Michael R. (2009). "Combining Data from Probability and Non-Probability Samples Using Pseudo-Weights". In: Survey Practice 2 (6), pp. 813–845.
 - Wang, L., R. Valliant, and Y. Li (2021). "Adjusted logistic propensity weighting methods for population inference using nonprobability volunteer-based epidemiologic cohorts". In: *Stat Med.* 40.4, pp. 5237–5250.

