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Pew Institute’s example

▶ Raking alone was reported to be inferior to combined methods



Review of the IPW weight construction

▶ Let R denote a subgroup indicator including a binary response
condition, X a vector of covariates, and Y a continuous
outcome of interest.

▶ Weights wgt to equate covariate distributions among different
populations

wgt × P(X |R = 1) = P(X ).

▶ IPW wgt ≈ 1
P(R=1|X ) .



Interpretation of IPW weights
ID R X Y Y 1 Y 0

1 1 X1 Y1 Y1 ??

2 1 X2 Y1 Y1 ??

. . . . . . . . . . . . . . . . . .

m 1 Xm Ym Ym ??

m + 1 0 Xm+1 Ym ?? Ym

. . . . . . . . . . . . . . . . . .

n 0 Xn Yn ?? Yn

n: sample size, m: Σn
i=1(Ri = 1), ??: missing Y

▶ wgt to weight the subgroup (R = 1) data to make it look like
the entire data set, i.e., both R = 1 and R = 0.

▶ Y 1: the potential outcome of Y that could have been
observed if every unit had R = 1.

▶ E (Y 1) =
∑

wgt×R×Y∑
wgt and E (Y 0) =

∑
wgt×(1−R)×Y∑

wgt .

▶ Average causal effect: E (Y 1)− E (Y 0) under reasonable
assumptions [Robins et al., 2000].



IPW for balancing multivariate covariate distributions

▶ Correct IPW-based weights (wgt) are expected to hold:

wgt × P(X |R = 1) = P(X ).

▶ X is the p multivariate covariates X1,X2,...,Xp.

▶ wgt is to weight and make the multivariate distribution
P(X |R = 1) approximate P(X ).

▶ Causal inference and missing data methodologies that use
IPW is based on this notion [Miguel A. Hernán, 2020].

▶ wgt has a clear purpose to make a subset of the data set
become representative of a target sample with respect to the
multivariate distribution of X , not a univariate distribution of
each variable in X = X1, X2,...,Xp.



An important condition for wgt to correctly balance

▶ E (wgt × R × X1) = E (X1).

The weighted average of the single covariate X1 should be the
average of X1 for the entire sample (R = 1 and R = 0).

▶ wgt aims to balance the multivariate covariate distributions
between R = 1 and the entire sample, but checking this
balancing property has been done in an univariate sense
[Austin, 2011].

▶ Even though balancing multivariate distribution of X is a
principal task of IPW-based weights wgt, it is based on a
response propensity model P(R = 1|X ), which is a single
scalar value and a one-dimensional summary of X .

▶ Because IPW weights wgt require a very ‘good’ response
propensity score, careful modeling is needed.



Machine-learning method: generalized boosted
model(GBM)

▶ IPW weights heavily rely on the correctness of the response
propensity model and have been built with machine-learning
methods including the GBM.

▶ R package twang [Cefalu et al., 2021], managed by RAND
institute’s staff, builds GBM-based responses propensity
models in causal inference.

▶ R package twang automates the process of creating IPW
weights with the GBM-based response propensity model.

▶ GBM can handle high dimensionality, colinearity, nonlinearity,
missing data, and complex interactions among covariates.

▶ GBM does not require an assumption that the logistic
regression model needs, and hence it is nonparametric (a
black box problem).

▶ GBM reports the relative influence of each covariates at a
percent scale in a nonparametric way.



What if wgt is incorrect?

▶ wgt (from IPW) is expected to hold the univariate balancing
condition

E (wgt × R × Xk) = E (Xk),

for k=1, . . . , p.

▶ If this does not hold, then the response propensity is
considered incorrectly specified for wgt.

▶ A calibration is needed for wgt to hold the equality above.

▶ Survey statisticians’ raking calibration creates such additional
weight to enable the balancing equality.



The entropy balancing (ebal) technique [Hainmueller,
2012]

▶ Ebal has been extensively used in causal inference

▶ Ebal aims to attain the p-univariate balancing conditions

wgt × P(X1|R = 1) = P(X1),

wgt × P(X2|R = 1) = P(X2),

. . .

wgt × P(Xp|R = 1) = P(Xp),

▶ Recall that the IPW method aims to meet the multivariate
balancing condition for the multivariate p covariates
X1,X2, ...,Xp

wgt × P(X |R = 1) = P(X )



The entropy balancing (ebal) technique: continued

▶ R package ebal [Hainmueller, 2022] minimizes the following
objective function to re-weight ‘working’ IPW weights wgt by
creating a new weight wgtebal = wgt × a(x), where a(x) is an
additional factor that helps wgt meet univariate balancing
properties.

∑
respondents

wgtebal log(wgtebal/wgt) +

p∑
j=1

λj [wgtebalXj −mj ] + ...


▶ wgtebal aims to attain the p univariate balanced distributions,

while the IPW-based weights wgt aim to attain the
multivariate version of balanced distribution of all covariates
X .

▶ Ebal has been extensively used as a raking method for causal
inference in Economics.



Kang and Schafer [2007] (KS) simulation study design as a
check point to evalute methods

▶ KS designed the following simulation to critically evaluate
methodologies for causal inference and missing data analysis.

y = 210 + 27.4z1 + 13.7z2 + 13.7z3 + 13.7z4 + ϵ,

π = 1− (1 + exp(−z1 + 0.5z2 − 0.25z3 − 0.1z4))
−1,

x1 = exp(z1/2), x2 = z2/(1 + exp(z1)) + 10, x3 = (z1z3/25 + 0.6)3,

x4 = (z2 + z4 + 20)2, and ϵ and z ’s were from standard normal

distributions.

▶ z ’s are not available but x ‘s are available to analysts.

▶ x ’s are reasonable predictors for y and r in lieu of z .



KS simulation study: continued

▶ KS design

ID R X Y Y 1

1 1 X1 Y1 Y1

2 1 X2 Y1 Y1

. . . . . . . . . . . . . . .

m 1 Xm Ym Ym

m + 1 0 Xm+1 Ym ??

. . . . . . . . . . . . . . .

n 0 Xn Yn ??

n: sample size, m: Σn
i=1(Ri = 1),

??: missing Y

▶ Y 1 is a potential outcome that could have been observed if a
unit had responded (R = 1).

▶ E (Y 1) = 210 is the value to be inferred with X ’s and Y
within the subgroup of R = 1.



KS study results for 1000 samples

Weights MBias VBias RMSE MAE RNG

wgt ebal 1.881 2.310 2.418 1.894 -1.005:4.966

wgt gbm1 2.997 1.806 3.285 2.973 0.36:5.666

wgt gbm2 3.394 1.745 3.642 3.383 0.789:5.972

wgt gbm1ebal 1.271 1.879 1.869 1.365 -1.342:4.024

wgt gbm2ebal 0.880 1.754 1.590 1.098 -1.726:3.514

ols 0.725 2.263 1.669 1.159 -2.213:3.693

bias = 210− est

MBias = 1
103

∑
bias

VBias = 1
103−1

∑
(bias −MBias)2

RMSE =
√

1
103

∑
bias2

MAE = median of abs(bias)

RNG = 2.5%− 97.5%

▶ ‘ols’ indicates ordinal least square regression estimates in
fitting a regression for units with R = 1 and use its estimated
coefficients to predict the entire sample.



Ebal results

Weights MBias VBias RMSE MAE RNG

wgt ebal 1.881 2.310 2.418 1.894 -1.005:4.966

wgt gbm1ebal 1.271 1.879 1.869 1.365 -1.342:4.024

wgt gbm2ebal 0.880 1.754 1.590 1.098 -1.726:3.514

ols 0.725 2.263 1.669 1.159 -2.213:3.693

bias = 210 - est; MBias= 1
103

∑
bias; VBias = 1

103−1

∑
(bias − MBias)2; RMSE =

√
1

103

∑
bias2; MAE =

median of abs(bias); RNG = 2.5% - 97.5%

▶ The simple ols method was reported to be the most unbiased
method by Kang and Schafer [2007].

▶ Ebal’s MBias was improved with GBM.

▶ wgt gbm2ebal outperformed the ols in RMSE, MAE, and
RNG!

▶ ebal alone is inferior to ebal-raked GBM IPW.



GBM results

Weights MBias VBias RMSE MAE RNG

wgt gbm1 2.997 1.806 3.285 2.973 0.36:5.666

wgt gbm2 3.394 1.745 3.642 3.383 0.789:5.972

wgt gbm1ebal 1.271 1.879 1.869 1.365 -1.342:4.024

wgt gbm2ebal 0.880 1.754 1.590 1.098 -1.726:3.514

ols 0.725 2.263 1.669 1.159 -2.213:3.693

bias = 210 - est; MBias= 1
103

∑
bias; VBias = 1

103−1

∑
(bias − MBias)2; RMSE =

√
1

103

∑
bias2; MAE =

median of abs(bias); RNG = 2.5% - 97.5%

▶ GBM, if with ebal, worked better than itself.

▶ GBM worked worse when interaction.depth increased from 1
to 2.

▶ GBM, with ebal, worked better when interaction.depth
increased from 1 to 2.



1000 simulated samples for balancing results I

Table: Averages of variables

method X̄1 X̄2 X̄3 X̄4 E(Y (1))

all 1.134 10.000 0.219 401.985 210.023

wgt ebal 1.134 10.000 0.219 401.985 208.119

wgt gbm1 1.083 10.020 0.217 403.406 207.003

wgt gbm2 1.068 10.025 0.218 403.224 206.606

wgt gbm1ebal 1.134 10.000 0.219 401.985 208.729

wgt gbm2ebal 1.134 10.000 0.219 401.985 209.120

▶ GBM methods alone (wgt gbm1 and wgt gbm2) did not
completely balance covariate distributions.



1000 simulated samples for balancing results II

Table: Averages of standardized difference of variables

method x1 x2 x3 x4

wgt ebal 0.394 0.530 0.050 0.443

wgt gbm1 2.877 3.236 1.331 1.348

wgt gbm2 4.165 3.894 1.051 1.189

wgt gbm1ebal 0.440 0.438 0.265 0.426

wgt gbm2ebal 0.031 0.032 0.032 0.045

▶ A standardized difference:

d =
∆̄B√∑B

b=1(∆b − ∆̄B)2/(B − 1)
, B=1000

where ∆̄B = 1
B

∑B
b=1∆b, ∆b is (x̄1b − x̄b), x̄1b indicates the

sample mean of covariate among R = 1 and x̄b is for all units
in the bth bootstrap (simulation) sample.

▶ d < 0.1 implies that univariate balancing conditions were met
by negligible differences in the mean of a covariate between
the subgroup with R = 1 and all [Austin, 2011].



Summary

▶ Calibrated machine learning-based IPW weights produced as
reasonable estimates as the ols method in inferring the average
of an outcome with missing data via the KS simulation study.

▶ The GBM machine-learning method was used for IPW to
meet the multivariate balancing condition.

▶ The ebal method was used to meet the univariate balancing
conditions.

▶ Either GBM alone or ebal alone is inferior to the combined
method.

▶ The combined method used 1) GBM to meet the multivariate
condition, which is hard to check, and 2) ebal as ‘insurance’
to complete the univariate conditions.
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