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Population estimation from web-based surveys

▪ Web-based surveys, nonprobability and probability-sampled, can be used 
for more timely and cost-effective data collections 

▪ However, these surveys may be subject to lower coverage and response 
rates than large nationally representative surveys

▪ Selection bias has been a concern due to differences in the composition of 
web panels compared to the total population, which can impact 
population mean estimation

▪ To adjust for these differences, weighting methods have been applied to 
web surveys to align the covariate distribution to a high-quality 
benchmark
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Propensity score-adjustment methods

▪ Propensity score (PS) methods were developed by Rosenbaum and Rubin 
(1983) to control for confounding in treatment estimation in observational 
studies

▪ In survey research, PS-based adjustment methods are used as a 
reweighting method to align the distribution of specified variables 
between a target (web) survey and a high-quality reference survey 

▪ Estimated propensity scores are incorporated into the weights using 
various approaches such as PS weighting and PS matching
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Covariate inclusion in propensity score models

▪ Some literature recommends including all variables collected in both the 
target and reference data sources in PS-adjustment

▪ Key question for constructing the pseudo-weights is which variables to 
include in the PS model to improve population mean estimation

▪ Study assesses the impact of selected covariates in PS-models on the bias 
and variance of the estimated population mean
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Methods



Covariate types in PS adjustment

▪ Directed acyclic graph (DAG) used to examine how different variables in 
the causal pathways impact the performance of PS-adjustment

▪ In practice, any pairs or all confounders, outcome predictors, and selection 
variables may be correlated in the underlying population

 

Confounder
Outcome PredictorSelection Variable

OutcomeSelection Indicator
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Uncorrelated case: assessing bias and variance of 
population mean

▪ Numerically, it can be shown that confounders (X1) induce bias in the 
estimate of the population mean (bias ≠ 0) if they are not balanced 
between the target sample and population

▪ In addition, it can be shown that the inclusion of selection variables (X3) 
result in larger variance estimates since they are non-informative of the 
outcome Y

▪ Propensity models should include confounders (X1) alone or confounders 
(X1) and outcome predictors (X2) to produce unbiased and efficient mean 
estimates

▪ The inclusion of selection variables (X3) in the propensity model does not 
add bias, but inflates the variance of the estimates
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▪ Backdoor criteria (Pearl 2009) removes confounding via conditioning on a 
set of covariates that block the backdoor paths between A and Y

▪ When (X1 and X3) or (X1 and X2) are correlated, X1 should be included in 
the propensity model to produce an unbiased estimate of the mean

▪ When (X2 and X3) are correlated, (X1 and X2) or (X1 and X3) should be 
included in the propensity score model to produce unbiased estimates

Correlated case: assessing bias and variance of 
population mean
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Simulation



Set up
Finite population (N=20,000)

▪ Three covariates (X1, X2, and X3) simulated using trivariate normal 
distributions with specified pairwise correlations

▪ Binary outcome Y ~ Bernoulli distribution as a function of X1 and X2

Target Sample (N=1,000)

▪ Sample (A=1) selected from population using probability proportional to 
size (PPS) sampling with measure of size as a function of X1 and X3

▪ Inclusion probabilities (sample weights) are treated as unknown

Probability Sample (N=500)

▪ Sample (A=0) is selected using the same sampling design as the target 
sample selection with known selection probabilities
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Conditions

Conducted over 500 iterations:

▪ Simulation 1: independent covariates in the finite population (𝜌𝑥1𝑥2 =
𝜌𝑥1𝑥3 = 𝜌𝑥2𝑥3 = 0), weights adjusted using the PS matching method kernel 
weighting (KW, Wang et al. 2020)

▪ Simulation 2: varies covariate correlation in the finite population 
( 𝜌𝑥1𝑥2 , 𝜌𝑥1𝑥3 , 𝜌𝑥2𝑥3 = .6,0,0 , 0, . 6,0 , 0,0, . 6 , .6, . 6,0 , .6,0, . 6 , 0, . 6, . 6 ,

or .6, . 6, . 6 ), weights adjusted using KW

▪ Simulation 3: varies covariate correlation and includes interaction effects 
between covariates on the outcome and target sample inclusion (𝛼12 =
𝛽13 = 0.5), weights adjusted using KW and the PS weighting method 
adjusted logistic propensity (ALP)
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Simulation 1 results

▪ Propensity models including the confounder (X1) produce approximately 
unbiased estimates of the finite population mean of Y

▪ Propensity models containing the selection variable (X3) result in inflated 
variance estimates

▪ Among the unbiased estimators, w(x1) yields the most efficient estimates

Sample w(x1) w(x2) w(x3) w(x12) w(x13) w(x23)

Bias (×102) 4.61 0.26 4.50 4.83 0.26 0.41 4.77

Empirical Variance (×104) 2.20 2.68 2.62 2.96 2.92 3.43 3.32

Mean Squared Error (×104) 23.48 2.75 22.85 26.31 2.99 3.60 26.04
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Simulation 2 results

Sample w(x1) w(x2) w(x3) w(x12) w(x13) w(x23)

𝜌𝑥1𝑥2 , 𝜌𝑥1𝑥3 , 𝜌𝑥2𝑥3 = .6, 0, 0

Bias (×102) 7.35 0.37 2.98 7.60 0.37 0.59 3.25

Empirical Variance (×104) 2.15 2.59 2.64 2.77 2.66 2.88 2.84

Mean Squared Error (×104) 56.14 2.72 11.52 60.57 2.79 3.23 13.42

𝜌𝑥1𝑥2 , 𝜌𝑥1𝑥3 , 𝜌𝑥2𝑥3 = 0, . 6, 0

Bias (×102) 7.27 0.32 7.16 3.21 0.30 0.41 3.12

Empirical Variance (×104) 2.17 3.60 2.39 3.68 3.53 4.05 3.66

Mean Squared Error (×104) 54.98 3.70 53.67 13.97 3.62 4.22 13.39
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▪ When (X1 and X3) or (X1 and X2) are correlated, PS-adjusted weights that 
balance the distributions of the confounders (X1) produce approximately 
unbiased estimates



Simulation 2 results

Sample w(x1) w(x2) w(x3) w(x12) w(x13) w(x23)

𝜌𝑥1𝑥2 , 𝜌𝑥1𝑥3 , 𝜌𝑥2𝑥3 = 0, 0, . 6

Bias (×102) 7.55 2.98 4.65 4.87 0.26 0.37 4.83

Empirical Variance (×104) 2.01 2.52 2.38 2.57 2.66 2.75 2.66

Mean Squared Error (×104) 59.00 11.38 24.00 26.30 2.73 2.89 26.03
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▪ When correlation exists between X2 and X3 , inclusion of only the 
confounder (X1) in the PS model induces bias

▪ For all correlation conditions, PS-adjusted weights that balance the 
distributions in the outcome predictors (X2) or selection variables (X3) along 
with the confounders (X1) produce approximately unbiased estimates

▪ Empirical variance estimates and MSEs for models including X1 and X2

(w(x12)) tend to be smaller than models including X1 and X3 (w(x13))



Simulation 3 results

▪ ALP approach (PS weighting) yields unbiased estimates only under the 
true propensity model (model containing X1, X3, and interaction term X1* 
X3)

▪ KW method (PS matching) yields unbiased estimates across propensity 
models containing (1) X1 and X2 or (2) X1 and X3, with or without 
interaction terms

▪ Under the true model, the biases of ALP estimates are consistently closer 
to zero
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Application: Research and Development 
Survey



National Center for Health Statistics’ Research and 
Development Survey (RANDS)

▪ Ongoing series of surveys conducted by the National Center for Health 
Statistics (NCHS, https://www.cdc.gov/nchs/rands/)

▪ Primarily recruited, web-based commercial survey panels

▪ Designed to expand NCHS’ methodological research:

– To supplement NCHS’ survey and questionnaire evaluation efforts, 
including the detection of measurement error

– To explore ways to integrate data from high-quality data collections 
with commercial survey panels to produce timely estimates while 
maintaining reliability

▪ Adapted to provide early experimental estimates on the COVID-19 
pandemic (https://www.cdc.gov/nchs/covid19/rands.htm) 
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Estimating national prevalence of asthma from RANDS 3

▪ RANDS 3 was conducted in 2019 using NORC’s AmeriSpeak Panel 

▪ Panelists were surveyed via web on questions related to general and 
mental health and medical conditions, including diagnosed asthma

▪ 2019 National Health Interview Survey, a cross-sectional household 
interview survey that collects information on a broad range of health 
topics, is evaluated as the gold standard

RANDS 3 2019 NHIS

Sample Size 2,646 31,997

Response Rate 18.1% 59.1%

Asthma 
prevalence

Mean 16.86% 13.46%

Standard Error 0.98% 0.25%
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PS model set up and covariate selection

▪ Common covariates in RANDS 3 and 2019 NHIS considered as potential 
calibration variables, including sociodemographic and health variables

▪ Covariate types were identified using backward selection on outcome and 
propensity score models containing main effects and pairwise interactions

– Confounders: common terms in the outcome and propensity models

– Selection variables and predictors: variables in the propensity model 
or outcome model only

▪ All bivariate correlations between selected variables were statistically 
significant

▪ PS-adjustment implemented to construct RANDS 3 pseudo-weights using 
KW method with 2019 NHIS as reference dataset
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Estimated asthma prevalence

▪ Estimate using RANDS weights compared to propensity adjusted weights 
with variables identified as confounders (x1), predictors from either the 
NHIS (x2.n) or RANDS (x2.r), and selection variables (x3) 

▪ PS-adjusted estimates had smaller relative bias and MSE compared to 
estimate using unadjusted RANDS panel weights

▪ Models containing selection variables produced larger estimated variances 20

Propensity Model
Coefficient of 

Variation
Relative Bias 

(%)
Standard Error

(× 102)
Mean Squared Error

(× 104)
RANDS Weights 0.91 25.31 0.98 12.56

All Variables 1.13 17.55 1.21 7.04

w(x12.n) 1.07 11.41 0.93 3.23

w(x12.r) 1.08 12.85 0.97 3.94

w(x13) 1.10 13.35 1.04 4.31



Discussion



Discussion

▪ Study integrates multiple data sources to provide more robust and 
efficient inference from web surveys

▪ Findings provide a principled approach for selecting covariates for 
population mean estimation

– Confounders, variables related to both the selection indicator and the 
outcome of interest, are important to include in the PS model

– When correlation exists between covariates, the PS model should 
balance the distributions of the confounder and either the outcome 
predictor or selection variable

– The inclusion of selection variables in the PS model will inflate the 
estimated variance of the population mean but not add bias
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