

Race and Ethnicity Modeling Applied to Linked Health Data

Lisa B. Mirel, Dean Resnick, Jessie L. Parker, Cindy Zhang, and Christine Cox FCSM Session D-2: *Dying for Better Data: Using Administrative Records to Improve the Quality and Utility of Health Survey Data* October 26, 2022

Background

- Linked health data enable researchers to explore social determinants of health (SDOH) and health equity research
- However, some survey and administrative data lack key variables for SDOH and health equity research
- NCHS has a data linkage program that links NCHS survey data with administrative records
- To further enhance SDOH and health equity research our team explored imputing race and ethnicity information that could be applied to linked data

Background: NCHS Data Linkage Program

- Create linked data files that support high quality research and program evaluation
- Utilize state of the art linkage methodologies and provide documentation and support for analyzing linked data files
- Explore innovative methods for providing researcher access to linked data

NCHS surveys used in linkages

National Health Interview Survey (NHIS)

A nationally representative, cross-sectional sample of the US civilian noninstitutionalized population, which includes a household interview survey that serves as an important source of information on the nation's health

National Health and Nutrition Examination Survey (NHANES)

A nationally representative, cross-sectional sample of the US civilian noninstitutionalized population, which includes a household interview followed by an examination in a mobile examination center that serves as an important source of information on the health and nutritional status of adults and children

National Hospital Care Survey (NHCS)

NHCS collects data on patient care in hospital-based settings (inpatient, emergency, and outpatient departments) to describe patterns of health care delivery and utilization in the US

Motivation: adding race and ethnicity data to linked files

- NHCS includes information on conditions and treatments of patients from sampled hospitals but data on race and ethnicity is limited
 - In the 2016 NHCS, nearly 70% of patient records were missing race and ethnicity information
- The linked NHCS-NDI data provide race and ethnicity information for decedents, but it remains missing for those assumed alive
 - This limits the analyses that can be conducted by race and ethnicity
- Analysis: assess mortality rates by race and ethnicity; the denominator should include both those who are alive and have died

Methods

- Use model for imputing race and ethnicity
- Apply model to NHIS which includes self-reported race and ethnicity
 - Assess model overall and at precision thresholds, using positive/negative predictive value and kappa statistics
- Apply model to linked NHCS-NDI data and calculate mortality rates by race and ethnicity, overall and a precision threshold

Model for race and ethnicity imputation

- Model builds on work by Marc Elliott, et al., described as Bayesian Surname Geocoding (BSG) method
- Model leverages race and ethnicity proportions (priors) derived from Census block
- First Name used in analysis (in addition to last name)
- Name proportions among race and ethnicity used
 - e.g., P(Last Name = 'Clemente' | Hispanic),P(First Name = 'Anna' | Hispanic)

Modeling strategy

Posterior distribution computation:

 $P \sim P([Race Bth] = R | Census Block)$ $\cdot P(FN | [Race Bth] = R) \cdot P(LN | [Race Bth] = R)$

P: Probability, R: Race and Ethnicity, FN: First Name, LN: Last Name

Imputation category assigned to group with highest probability

Imputation categories

- Ethnicity
- Hispanic (takes precedence over race, e.g., persons described as Hispanic are not assigned a race group)
- Race
- White (non-Hispanic)
- Black (non-Hispanic)
- Asian or Pacific Islander (API, non-Hispanic)
- American Indian or Alaskan Native (AIAN, non-Hispanic)

Evaluation with 2018 NHIS data

- Imputed race and ethnicity was compared to the 2018 NHIS respondent reported race and ethnicity ("Gold Standard")
- Assessed Positive Predictive Value (PPV) and Negative Predictive Value (NPV)
- Compared respondent reported to imputed race and ethnicity using Cohen's Kappa
 - overall and by sex and age
- Initial evaluation uses all records
- Refined evaluation uses records with precision (P(Imputed Race = R) > 80%)

Respondent-reported versus imputed: PPV and NPV

	PPV	NPV		
Hispanic				
Overall	89.1	95.4		
Precision>80%	94.2	96.6		
Non-Hispanic Black				
Overall	72.1	95.8		
Precision>80%	87.8	97.5		
Non-Hispanic White				
Overall	87.3	87.3		
Precision>80%	90.8	94.7		

Respondent-reported versus imputed: PPV and NPV (cont.)

	PPV	NPV
Non-Hispanic Asian*		
Overall	70.5	97.8
Precision>80%	84.4	98.4
Non-Hispanic Other*		
Overall	56.8	98.6
Precision>80%	82.5	99.0

* Comparison was made using NHIS public use categories for race and ethnicity (e.g., respondent reported non-Hispanic Asian was compared to imputed non-Hispanic API and respondent reported non-Hispanic Other was compared to imputed non-Hispanic AIAN)

Kappa statistic: all records and precision >80%

	Hispanic	Non- Hispanic Black	Non- Hispanic White	Non- Hispanic Asian	Non-Hispanic Other
All	0.80	0.66	0.72	0.66	0.25
All precision (p) >80%	0.86	0.80	0.81	0.77	0.30
Female	0.78	0.68	0.71	0.64	0.25
Female (p>80%)	0.85	0.82	0.81	0.76	0.32
Male	0.82	0.64	0.73	0.68	0.24
Male (p>80%)	0.88	0.77	0.82	0.79	0.28
Age 65+	0.82	0.71	0.76	0.69	0.26
Age 65+ (p>80%)	0.90	0.86	0.87	0.79	0.29

Implementation: race and ethnicity imputation model applied to linked NHCS-NDI data

- 70% of NHCS patients are missing race and ethnicity
- Analysis: assess mortality rates by race and ethnicity; the denominator should include both those who are alive and have died
- Post-hospitalization mortality rates calculated by time after discharge (0-30 days), age (65 and over), sex and imputed race and ethnicity

Mortality rates 0-30 days post hospital discharge for 65 and older

NOTE: small number of 2016 NHCS patients imputed to non-Hispanic, AIAN. They are not included in this tabulation.

Summary

- This research demonstrates that it is possible to reliably impute such information using Bayesian techniques applied to data obtained from other sources
 - Precision estimates >80% seem to increase concordance
- Imputation strategy employed here is relatively straightforward and uses publicly available sources to develop the race and ethnicity distributions
- Applying statistical techniques to impute critically important health information can enable further study of the role of race and ethnicity in health outcomes

References

- Elliott, M. N., Fremont, A., Morrison, P. A., Pantoja, P., & Lurie, N. (2008). A new method for estimating race/ethnicity and associated disparities where administrative records lack self-reported race/ethnicity. *Health services research*, 43(5p1), 1722-1736.
- Tzioumis, K. (2018). Demographic aspects of first names. Scientific data, 5(1), 1-9.
- Data:
 - <u>https://www2.census.gov/census_2010/redistricting_file--pl_94-171/</u>
 - <u>https://www.census.gov/topics/population/genealogy/data/2010_sur</u> <u>names.html</u>
 - <u>https://www.nature.com/articles/sdata201825</u>

NCHS Data Linkage Program

Contact: Lisa Mirel Lmirel@cdc.gov

Subscribe to the NCHS Data Linkage Program LISTSERV to receive updates! Email a message to <u>list@cdc.gov</u> Leave the subject line blank. In the body of the message, type or paste:

SUBSCRIBE NCHOSATALINKAGEPROGRAMastname, firstname

where lastname, firstname' is your last and first name.

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

