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Plant-level Productivity and Data Cleaning
• Large economics literature uses Census Bureau’s plant-level 

manufacturing data to study productivity and productivity dynamics
• See, e.g., Bailey, Hulten, and Campbell (1992), Olley and Pakes (1992), Bartelsman and Doms

(2000), Foster, Haltiwanger, and Syverson (2008), Syverson (2011)

• Literature mostly ignores fact that large % of Census’s manufacturing 
data are imputed

• Data cleaning done by Census Bureau has huge impact on measured 
cross-sectional productivity dispersion

• White, Reiter and Petrin (2018), Rotemberg and White (2020)

• How does Census data cleaning affect measured productivity growth?
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What We Do in This Paper

• Start with unedited “captured” Annual Survey of Manufactures 
(ASM), 2009-2013

• Use Census Bureau’s edit rules
• Extend Bayesian simultaneous edit-imputation method of Kim, Cox, 

Kerr, Reiter, and Wang (2015) to panel data
• Compare estimates of aggregate productivity growth using:

• Data edited-imputed by Census Bureau
• Data edited-imputed by us using our Bayesian method
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The Annual Survey of Manufactures

• Plant-level survey conducted annually* 
• Sample size: about 50,000 plants
• Universe is U.S. manufacturing sector (about 300,000 plants)
• Certainty sample: 

• large plants, sampled every year

• Probability sample: 
• Small-to-medium plants, sampled with probability proportional to size
• 5-year rotating panels beginning in years ending in ‘4’ or ‘9’

5



Variables in the ASM

• ASM 
• Collects (at plant-level) and publishes (at industry level) 55 plant-level 

variables  

• This paper: 
• We focus on 5 variables used for measuring productivity:

• Value of shipments
• Payroll 
• Employment
• Cost of materials
• Capital stock*
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Imputation Rates in the ASM

7

0

10

20

30

40

Value of Shipments Annual Payroll Cost of Materials

Imputation Rates by Variable 
2002-2010 average

% of Observations imputed
0

10

20

30

40

50

60

2003 2004 2005 2006 2007 2008 2009 2010

Imputation Rates for Productivity
ASM years only, 2003-2010

% of plants with imputed data for >=1 variable used to measure
productivity

Source: Foster, Grim, Haltiwanger, and Wolf (2017), table A7



ASM Editing and Imputation Comparison
What Census Bureau does What we do in this paper
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Uses within-year ratio edit rules

Uses year-to-year ratio-of-ratios edit rules

Edits-imputes one year at a time (prior-year data is 
fixed)

Fellegi-Holt editing algorithm (minimizes # of edits)

Uses hierarchy of imputation methods, e.g.,
• Administrative records substitution 
• Uni- or trivariate regression models
• Analyst corrections

Edit rules & imputation models same within NAICS6

Same

Same

Edit-impute 5-year panel simultaneously

Simultaneous Bayesian edit-imputation (chooses 
likeliest variable(s) to edit given the “good” data)

Use truncated Dirichlet Process mixture of normals to 
model joint distribution of  5x5 variables 

Edit rules & imputation models same within NAICS4



Types of ratio edit rules used in the ASM

• Cross-sectional:

𝑋𝑋𝑋𝑋𝐵𝐵𝑗𝑗𝑗𝑗 ≤
𝑋𝑋𝑖𝑖𝑗𝑗𝑗𝑗
𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗

≤ 𝑋𝑋𝑋𝑋𝐵𝐵𝑗𝑗𝑗𝑗

• Longitudinal :

𝑋𝑋𝑋𝑋𝐵𝐵𝑗𝑗 ≤

𝑋𝑋𝑖𝑖𝑗𝑗𝑗𝑗
𝑌𝑌𝑖𝑖𝑗𝑗𝑗𝑗

𝑋𝑋𝑖𝑖𝑗𝑗,𝑗𝑗−1
𝑌𝑌𝑖𝑖𝑗𝑗,𝑗𝑗−1

≤ 𝑋𝑋𝑋𝑋𝐵𝐵𝑗𝑗
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Census Editing vs. Bayesian Edit-Imputation
(Note: Scatterplots are from Kim et. al (2015) synthetic data)

What Census Bureau does What we do in this paper
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Reported value 
lies outside edit-
rule bounds



Census Editing vs. Bayesian Edit-Imputation

What Census Bureau does What we do in this paper
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Impute value on this line…



Census Editing vs. Bayesian Edit-Imputation

What Census Bureau does What we do in this paper
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…or on this line



Census Editing vs. Bayesian Edit-Imputation

What Census Bureau does What we do in this paper
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Take draws from 
multiple data-
driven models of 
the joint 
distribution



Census Bureau Imputation
(includes imputation for non-response)

14

 


[image: image1.jpg]Ln{TV5)

2007 reody-miv concrete plonts
with Regression line using only non-inputed doto

La(s¥)

+ Hor-inpited © Inpated









Three Versions of ASM Data

• One “final” dataset edited-imputed by Census
• Two versions of data multiply-edited-and-imputed by us:

• “EI lax” data: 
• use the laxest of the ratio-edit bounds within each NAICS4 industry

• “EI strict” data: 
• use the strictest of the ratio-edit bounds within each NAICS4 industry
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Estimates from multiply imputed data

• For each of our models (“lax” and “strict”) and within industry:
• Run an MCMC with a burn-in of 3000 iterations
• Keep 10 implicates with 300 iterations between implicates

• For each implicate-year, estimate aggregate productivity growth
• Compute means and standard errors across implicates
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Aggregate Productivity Growth Rates (annual), 2009-2013 ASM,
Census Final vs. EI “lax” mean
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Aggregate Productivity Growth Rates (annual), 2009-2013 ASM,
Census Final vs. EI “lax” mean vs. EI “strict” mean
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Aggregate Productivity Growth Rates (5-year), 2009-2013 ASM,
Census Final vs. EI “lax” mean vs. EI “strict” mean
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Aggregate Productivity Growth Rates (annual),
Census final vs. EI “lax” with 95% Confidence Intervals
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Aggregate Productivity Growth Rates (annual)
Census final vs. EI “strict” with 95% Confidence Intervals

21

-30%
-25%
-20%
-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%

2010 2011 2012 2013

final EI strict EI strict LB EI strict UB



Preliminary Conclusions

• The choice of editing and imputation method has a huge effect on 
measured aggregate productivity growth (APG) in U.S. manufacturing

• Uncertainty of APG estimates due to imputation is also large
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Next Steps

• Model validation exercises (training & truth sets)
• Why such big differences between Census final vs. our EI APG measures?

• Are certain industries driving the results?
• Small plants with big survey weights and big growth rates?

• Look at the effect of editing and imputation on :
• Persistence of plant-level productivity (e.g., autocorrelation of TFPR)
• Variability of plant-level TFP “shocks”
• Labor productivity growth
• Association between TFPR and exit
• All of the above by, e.g., firm size
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