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Bottom line up front

• Imprecisely estimated survey design 
parameters could harm sample efficiency

• There is a Bayesian approach to sample 
design, which accounts for this

• We identify the Bayesian optimal design in a 
particular establishment survey context
– Outperforms Neyman-HT in simulation
– Performs similarly or better than the main 

model-assisted approach considered
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I. Introduction
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Introduction

• Sample designs often assume population 
characteristics are known.

• In practice, some are typically estimated.
• Example. Optimal STSRS for estimating finite 

population mean via separate ratio model
– Theory: 𝑛𝑛ℎ ∝ 𝑁𝑁ℎ𝑆𝑆𝑑𝑑ℎ/ 𝑐𝑐ℎ (Cochran, 1977)

• 𝑆𝑆𝑑𝑑ℎ is the stratum SD of a residual term

– Practice: 𝑛𝑛ℎ ∝ 𝑁𝑁ℎ�̂�𝑆𝑑𝑑ℎ/ �̂�𝑐ℎ
• Typically, little attention is given to the effect of 

imperfect information on sample design.

4In the above, 𝑆𝑆𝑑𝑑ℎ2 = 𝑁𝑁ℎ − 1 −1∑𝑖𝑖=1
𝑁𝑁ℎ 𝑌𝑌ℎ𝑖𝑖 −

𝑌𝑌ℎ
𝑋𝑋ℎ
𝑋𝑋ℎ𝑖𝑖
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, and

𝑁𝑁ℎ,𝑛𝑛ℎ, 𝑐𝑐ℎ are the population size, sample size, and per-unit cost in stratum ℎ ∈ 1, … ,𝐻𝐻 .



Selected Bayesian design literature

• Bayesian optimal experimental design (Lindley, 1972) 
can be applied to STSRS sample allocation
– Flexible approach; accommodates uncertainty 

• Draper & Guttman (1968) consider continuous data
– Assumes use of pilot study data
– Special case leads approximately to Neyman allocation
– However, D&G assume fixed strata means and variances

• Rao & Ghangurde (1972) consider categorical data
– Assumes Dirichlet-multinomial model
– Applicability for continuous, skewed distributions?
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Heteroscedasticity and design

• Consider {𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖; 𝑖𝑖 = 1, … ,𝑁𝑁}, where
– 𝑌𝑌𝑖𝑖 = 𝛽𝛽𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖
– E𝑀𝑀 𝜀𝜀𝑖𝑖 = 0
– Var𝑀𝑀 𝜀𝜀𝑖𝑖 = 𝜎𝜎2𝑋𝑋𝑖𝑖𝑏𝑏; known 𝑏𝑏, 𝑋𝑋𝑖𝑖 > 0
– Independent 𝜀𝜀𝑖𝑖’s

• “b” (coefficient of heteroscedasticity) can 
meaningfully affect optimal allocation
– PPS/GREG strategy: 𝜋𝜋𝑖𝑖 ∝ 𝑋𝑋𝑖𝑖

𝑏𝑏/2 (e.g., SSW, 1992)
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Heteroscedasticity, visualized
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Data source: National Hospital Discharge Survey of 1968 (via PracTools)

• See Henry & Valliant (2009) for more real examples



Bayesian decision theory for optimal 
experimental design

• Lindley (1972) treats as a two-part decision:
– Choose the experiment, 𝑒𝑒 ∈ 𝐸𝐸 (e.g., 𝑒𝑒 = {𝑛𝑛ℎ})

• This results in the sample (data), 𝑥𝑥 ∈ 𝑋𝑋
– Translate the data into a terminal decision

• For example, compute estimate �𝜃𝜃 for parameter 𝜃𝜃 ∈ Θ
(e.g., finite population mean)

• Define a loss function of the form 𝐿𝐿 �𝜃𝜃,𝜃𝜃, 𝑒𝑒, 𝑥𝑥
• Lindley suggests finding optimal �𝜃𝜃, 𝑒𝑒 via

𝑚𝑚𝑖𝑖𝑛𝑛
𝑒𝑒 �

𝑋𝑋

𝑚𝑚𝑖𝑖𝑛𝑛
�̂�𝜃 �

Θ
𝐿𝐿 �̂�𝜃,𝜃𝜃, 𝑒𝑒,𝑥𝑥 𝑝𝑝 𝜃𝜃 𝑥𝑥, 𝑒𝑒 𝑝𝑝 𝑥𝑥 𝑒𝑒 𝑑𝑑𝜃𝜃 𝑑𝑑𝑥𝑥

8In the above, 𝑝𝑝(𝜃𝜃|𝑥𝑥, 𝑒𝑒) is the posterior pdf and 𝑝𝑝(𝑥𝑥|𝑒𝑒) is a conditional pdf.



Our research

• We consider optimal STSRS design while 
accounting for heteroscedastic errors and 
uncertain design parameters
– We aim for weaker assumptions than some 

previous Bayesian work
– We accommodate uncertain design parameters 

via Bayesian decision theoretic formulation
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II. Problem set-up and 
Bayesian analysis
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Problem set-up

• Study design:

– Pilot is only used for designing main study
– Strata defined upfront

• Model: 𝑌𝑌ℎ𝑖𝑖 = 𝛼𝛼ℎ𝑋𝑋ℎ𝑖𝑖 + 𝜀𝜀ℎ𝑖𝑖 , where 𝜀𝜀ℎ𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑑𝑑𝑁𝑁 0,𝑣𝑣ℎ𝑋𝑋ℎ𝑖𝑖𝑏𝑏

– Known 𝑋𝑋ℎ𝑖𝑖 > 0; known 𝑏𝑏

• Prior (diffuse): 𝜋𝜋 𝛼𝛼ℎ, 1
𝑣𝑣ℎ

∝ ∏ℎ=1
𝐻𝐻 𝑣𝑣ℎ
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Pilot (D1) Main (D2)
Decide 𝑛𝑛ℎ



Overview: our Bayesian decision theoretic 
analysis for the finite population mean

12Above, 𝑒𝑒 = 𝑛𝑛ℎ , �𝑌𝑌 = ∑ℎ=1𝐻𝐻 ∑𝑖𝑖=1
𝑁𝑁ℎ 𝑌𝑌ℎ𝑖𝑖 , and 𝑠𝑠2ℎ refers to the main study sample in stratum ℎ.

1. Objective: 𝐿𝐿 �𝑌𝑌, ��𝑌𝑌, 𝑒𝑒,𝐷𝐷𝐷 = ��𝑌𝑌 − �𝑌𝑌
2

– Minimized when ��𝑌𝑌 = E �𝑌𝑌 𝐷𝐷𝐷, 𝑒𝑒, 𝑏𝑏
2. Posterior loss is Var �𝑌𝑌 𝐷𝐷𝐷, 𝑒𝑒, 𝑏𝑏

– Apply Ericson (1969) to obtain

3. Preposterior analysis: average over future data (𝐷𝐷𝐷|𝐷𝐷𝐷)
– Consider uncertainty with respect to:

• Posterior for parameters given pilot, 𝛼𝛼ℎ,𝑣𝑣ℎ |𝐷𝐷𝐷
• Sample indicators, {𝑠𝑠2ℎ}
• Model uncertainty given above, 𝐷𝐷𝐷| 𝛼𝛼ℎ,𝑣𝑣ℎ ,𝐷𝐷𝐷, 𝑠𝑠2ℎ

– Results provided in paper

4. Optimize via mathematical programming 



III. Simulation
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Simulation design: compare strategies 
across a series of artificial populations

• “Strategy” denotes allocation + estimator
• We generated 𝑃𝑃 = 90 bivariate populations, and 

applied each strategy 𝑅𝑅 = 1000 times
• For population 𝑝𝑝, simulation 𝑟𝑟:

– Draw an equally allocated pilot sample of 𝑚𝑚 = 75 units
– For strategy 𝑎𝑎:

• Allocate and draw a main study sample of 𝑛𝑛 = 500 units
• Obtain point estimate and 95% CI

• Compare strategies’ RMSE, bias, and CI coverage/width

– For instance: 𝑟𝑟𝑚𝑚𝑠𝑠𝑒𝑒 �𝑌𝑌𝑝𝑝,𝑎𝑎 = 1
𝑅𝑅
∑𝑟𝑟=1𝑅𝑅 �𝑌𝑌𝑝𝑝,𝑎𝑎

𝑟𝑟 − 𝑌𝑌𝑝𝑝
2
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We considered three size measures
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Distributions of simulated stratified size measures, by MOS



We considered 30 structures for 
𝑌𝑌ℎ𝑖𝑖|𝑋𝑋ℎ𝑖𝑖~𝑁𝑁(𝛼𝛼ℎ𝑋𝑋ℎ𝑖𝑖 , 𝑣𝑣ℎ𝑋𝑋ℎ𝑖𝑖𝑏𝑏 )
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• 5 levels of 𝑏𝑏 considered: 𝑏𝑏 ∈ 0, 0.5, 1, 1.5, 2
• 6 choices of 𝛼𝛼ℎ , 𝑣𝑣ℎ , where {𝑣𝑣ℎ} were chosen 

as to approximately yield target correlations
Scenario 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4 𝛼𝛼5 𝜌𝜌1 𝜌𝜌2 𝜌𝜌3 𝜌𝜌4 𝜌𝜌5
1. Baseline 1 1 1 1 1 0.7 0.7 0.7 0.7 0.7
2. Lower correlations 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5
3. Higher correlations 1 1 1 1 1 0.9 0.9 0.9 0.9 0.9
4. Increasing correlations, 
fixed slopes 1 1 1 1 1 0.5 0.6 0.7 0.8 0.9

5. Fixed correlations, 
decreasing slopes 1.4 1.2 1 0.8 0.6 0.7 0.7 0.7 0.7 0.7

6. Increasing correlations, 
decreasing slopes 1.4 1.2 1 0.8 0.6 0.5 0.6 0.7 0.8 0.9



We compared several strategies

• We focused on three main strategies:
– Neyman plug-in/HT estimator (N-HT)
– Cochran plug-in/separate ratio estimator (C-SR)
– Bayesian allocation/prediction estimator (B-P)

• We also considered three rule-of-thumb 
allocations suggested or implied by Cochran for 
different levels of 𝑏𝑏 (used SR estimator for each)
– 𝑛𝑛ℎ ∝ 𝑁𝑁ℎ
– 𝑛𝑛ℎ ∝ 𝑁𝑁ℎ �𝑋𝑋ℎ
– 𝑛𝑛ℎ ∝ 𝑁𝑁ℎ �𝑋𝑋ℎ
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Simulation results: main strategies

• The three main strategies:
– were approximately unbiased; and
– had near-nominal coverage for 95% CIs.

• Therefore, we focused on analyzing RMSE
– Findings on RMSE were paralleled by analogous 

findings for CI relative width

18



B-P consistently outperformed N-HT
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Relative increase in RMSE from N-HT versus B-P (among MOS1 pops)
Scenario for {𝜌𝜌ℎ,𝛼𝛼ℎ}

1. Baseline
2. Lower 

corrs
3. Higher 

corrs 4. Inc. corrs
5. Dec. 
slopes

6. Inc. corrs, 
dec. slopes

b = 0 65% 32% 175% 72% 69% 77%
b = 0.5 44% 18% 138% 44% 51% 36%
b = 1 46% 24% 127% 35% 40% 28%
b = 1.5 52% 24% 139% 41% 51% 38%
b = 2 64% 44% 159% 75% 68% 62%

• Use of N-HT led to RMSE 11%–175% higher than B-P for 
individual populations (MOS1 pops displayed below)

• Results varied greatly by assumptions for 𝑓𝑓(𝑌𝑌ℎ𝑖𝑖|𝑋𝑋ℎ𝑖𝑖)
– Compare 2nd and 3rd data columns below



B-P did about as well or better than C-SR, with 
marked differences across populations

20

Relative increase in RMSE from C-SR versus B-P (among MOS1 pops)
Scenario for {𝜌𝜌ℎ,𝛼𝛼ℎ}

1. Baseline
2. Lower 

corrs
3. Higher 

corrs 4. Inc. corrs
5. Dec. 
slopes

6. Inc. corrs, 
dec. slopes

b = 0 19% 10% 18% 32% 29% 40%
b = 0.5 7% 3% 0% 2% 12% 7%
b = 1 6% 7% 3% 1% 4% 3%
b = 1.5 11% 9% 5% 5% 6% 5%
b = 2 23% 21% 23% 25% 24% 29%

• B-P showed the greatest advantage for a subset of MOS1 
scenarios (top and bottom rows below)

• In contrast, differences were fairly muted for most MOS2 
and MOS3 populations, which had less skewness



B-P sometimes produced more stable 
allocations than the main alternatives

• Differences in allocations’ stability were 
starkest for MOS1, 𝑏𝑏 = 2 pops, for instance:

21

Allocation summary statistics by allocation and stratum
Population 25 (MOS1, b=2, baseline 𝜌𝜌ℎ, 𝛼𝛼ℎ scenario)

Neyman Cochran Bayesian
h E(𝑛𝑛ℎ) 𝑠𝑠𝑑𝑑 𝑛𝑛ℎ E(𝑛𝑛ℎ) 𝑠𝑠𝑑𝑑 𝑛𝑛ℎ E(𝑛𝑛ℎ) 𝑠𝑠𝑑𝑑 𝑛𝑛ℎ
1 149 48 135 50 112 19
2 90 20 92 22 98 17
3 76 16 80 19 85 15
4 85 17 85 19 91 15
5 101 22 107 24 114 19



Performance was mixed for rule of 
thumb strategies

• C-SR and B-P strategies, which incorporate 
pilot data for allocation, consistently did as 
well or better than the RT-SR strategies
– 𝑛𝑛ℎ ∝ 𝑁𝑁ℎ �𝑋𝑋ℎ performed quite badly in some 

situations (e.g., RMSE 82%–204% higher than B-P 
for 𝑏𝑏 = 2, MOS1 populations)

– In contrast, 𝑛𝑛ℎ ∝ 𝑁𝑁ℎ �𝑋𝑋ℎ had reasonable 
performance for a subset of the 𝑏𝑏 = 1 scenarios 
(depending on the 𝛼𝛼ℎ and 𝜌𝜌ℎ)
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IV. Application
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We applied our methods to analyzing 
tax returns of public charities

• Source: IRS Form 990 data (National Center for 
Charitable Statistics [NCCS], Urban Institute)
– Analyzed 140,858 domestic operating public 

charities meeting inclusion criteria
– X = log revenue, 2008
– Y = log revenue, 2013

• Unstratified MCMC analysis yielded �𝑏𝑏 = 0.55
and 95% CI of (0.25, 0.66)

24



NCCS application (continued)

• We formed 24 strata based on nonprofit 
sector (8 groups) by revenue class (3 groups)

• Methods paralleled earlier simulation
– 𝑅𝑅 = 10,000 equally allocated pilots of 360 units 

used to design main studies of 1,800 units
– Compared RMSE, relative bias, CI properties
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C-SR and B-P again outperformed N-HT

• C-SR and B-P offered substantial reduction in 
RMSE than N-HT

• All three methods were approximately 
unbiased and had near-nominal CI coverage

26

Table. NCCS Simulation Results
Strategy Relative RMSE 1000*RelBias CI Coverage (%) 1000*CI RelWidth

N-HT 1.427 -0.00 94.7 6.48

C-SR 1.014 -0.01 94.8 4.57

B-P 1.000 -0.00 95.5 4.63
Note: RMSE is displayed relative to that of the B-P strategy.



V. Discussion
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We provided a Bayesian approach to 
sample design for our problem

• We considered STSRS designs for establishments
– Allow for heteroscedastic errors  improved realism
– Problem formulated via Bayesian decision theory
– We derived the approximate expected posterior 

variance, which is then minimized
• We assessed performance via simulation to 

artificial and real data
– The proposed B-P strategy provided substantial gains 

versus design-based approach
– B-P strategy did as well or better than the main 

model-assisted approach considered
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Potential future directions

• Consider other population structures, 
including those not following our model

• Compare to additional sampling strategies
• Extend to scenarios where “b” is unknown
• Consider other loss functions
• Identify other ways to express prior 

knowledge (e.g., in absence of pilot)
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