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Introduction 

Bureau of Labor Statistics (BLS) collects labor market and other economic data from monthly surveys and censuses. On the 

one hand BLS obtains these data from business and individual respondents under a pledge of confidentiality, assumes the 

responsibility of protecting any individual respondent data or data summaries from being revealed; on the other hand, BLS 

makes maximum effort to deliver useful information to its users in the form of summarized tables. This results in a dilemma 

between protecting respondent confidentially and reducing information loss from withholding publication table contents.  

BLS QCEW Proposed Publication Change 
BLS Quarterly Census of Employment and Wages (QCEW) is a census that collects data under a cooperative program 

between BLS and the State Employment Security Agencies. The data contain broad employment and wage information for 

all U.S. workers covered by state unemployment insurance laws and federal workers covered by the Unemployment 

Compensation for Federal Employee program. QCEW serves as a census of monthly employment and quarterly wages 

information by 6-digit NAICS industry at the national, state, and county levels. Tabulations of QCEW outcomes are available 

by 6-digit NAICS industry, by county, by ownership sectors and by size groups, in the form of print, automatic e-mail, fax or 

plain text file directly from BLS Internet ftp servers (ftp://ftp.bls.gov/pub/special.requrest/cew). More information on BLS 

QCEW program is available on the QCEW website at http://www.bls.gov/cew/home.htm. The detailed coverage and readily 

availability of the QCEW tabular data make it especially vulnerable to confidentiality disclosure risks.  

Many BLS survey programs currently use cell suppression for tabular data confidentiality protection. The cell suppression 

method completely suppresses the cells identified as having high confidentiality exposure risk as primary suppression cells 

based on certain confidentiality sensitivity measures, for example see Cox (1981). Additional cells, called secondary 

suppression cells, may also be suppressed, otherwise the values of the primary suppression cells can be calculated 

mathematically from published margins of the publication table. The cell suppression problem (CSP) involves finding a set of 

secondary suppression cells to protect against a potential attacker who aims to uncover contributing values from individual 

respondents to a cell of a statistical summary table. For example, QCEW tables publish employment levels and total wages of 

every NAICS industry at various detailed levels in U.S. by country, by size groups, by ownerships etc. An attacker could use 

mathematical techniques to calculate the contributing individual establishment employment levels or total wages based on 

published information contained in the table. A CSP solution would prevent the attacker from succeeding. CSP has been 

extensively studied in confidentiality protection literature, see for example Willenborg and de Waal (1996) for an in-depth 

discussion of this subject. 

Since cell suppression methods currently implemented suppress a large number of cells in order to protect QCEW publication 

tables, an alternative method is sought. Using QCEW data analyzed in this paper, following the BLS confidentiality 

sensitivity measures, we found for this data set containing employment of five major industry sectors (2-digit NAICS sectors) 

within a medium-sized U.S. State, 9979 or 59% of 16,878 publication cells have to be completely suppressed using network 

method, 10631 or 62% of all cells using the hypercube method (for a description of the hypercube method see Repsilber 

(1994) ). The level of employment represented by the suppressed cells is relatively small in comparison to the number of 

cells suppressed, ranging from 10% to 15% of the total value. Similar results of this magnitude for cell suppression have been 

also reported by other researchers. It is evident for the QCEW case that the cells suppressed in this manner comprise an 
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overwhelmingly large number of cells, while only represent a small portion of the total employment. Much detail on industry 

employment distribution at various geographic levels and other cross-classifications is lost due to confidentiality protection. 

Consequently users of BLS QCEW need as much information as possible on employment and wage information that are not 

sensitive but were blocked because of confidentiality. Users, including national policy makers, business firms, labor unions, 

trade associations, academic researchers and private research organizations hope BLS could reduce the number of suppressed 

cells or at least provide more information about these cells through some alternative method.  

 

 

 

 

One alternative to complete suppression considered by QCEW would be to publish primary cells in pre-defined, fixed 

intervals (FIs). Instead of suppressing the value of a cell, this method would publish all primary suppression cells in pre-

defined, fixed intervals (FIs) which cover the exact value of the sensitive cell value. The cut off points of these intervals are 

pre-defined and fixed. The consistency of the definition of these pre-defined intervals is kept across tables so that the users 

can compare values between various industries, geographic locations and other classifications by establishment 

characteristics. This method of publication can be used for employment, earnings and hours data, though our discussion in 

this paper will only focus on employment level data.  

Similar to the issues surrounding CSP, if QCEW data is published with FIs replacing primary suppression cells, to prevent 

outside intruders gaining identifiable information of individual contributors to a cell, additional protecting cells (PCs) may 

have to be published in FIs. Otherwise an intruder may be able to utilize this additional information and the additive 

relationships existing in the table to estimate the value of primary cells now in FIs and therefore the value of some 

contributors to the cell. Intruders can produce better estimates now than before with the added information of published FI 

bounds. The problem of minimizing the amount of cell values now expressed in FIs by selecting the right set of PCs while 

still preserving the protection of primary cells is what we call the fixed interval publication problem (FIPP). FIPP therefore is 

the problem of finding additional PCs to protect the primary cells while minimizing the “information loss”. If the concept of 

“information loss” can be consistently defined and measurable across the methods used to protect the tables -- just to mention 

it here without further deliberation, we found defining “information loss” consistently itself can be difficult which makes 

comparison between methods an imprecise game. This problem has its trace from the CSP therefore we will utilize as much 

as we knew about CSP to solve this problem. In this paper, we will propose a solution to the FIPP problem and evaluate the 

outcome from applying the solution to a subset of a realistic QCEW employment data set.  We will use the following fixed 

interval ranges for employment levels: 0-19, 20-99, 100-299, 250-499, 500-999, 1000-2499, 2500-4999, 5000-9999, 10000-

24999, 25000-49999, 50000-99999, 100000 or more. For example, QCEW would publish a suppressed cell value of “15” as 

“0-19”, a value of “351” as “250-499”, a value of “12,000” as “10,000-24,000”. 

Risks Associated with Publishing Primary Cells in FIs 
Tables 1a-c show a comparison between publication tables of QCEW employment by 6-digit NAICS industry at the U.S. 

country level before and after the proposed change. Notice in the current publication table, Table 1b, cells that do not meet 

BLS confidentiality protection requirements and secondary protection cells are completely suppressed and are marked with 

“x”.  

Under the proposed publication changes, these suppressed cells will be published in pre-defined FIs, as seen in Table 1c. For 

example, a primary or secondary cell with employment value of “348” will be published as “250-499”.  
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Table 1a. Fictitious Raw county employment table before any SDC treatment 

NAICS 
code County 1 County 2 County 3 County 4 County 5 County 6 

623 604 328 2100 491 835 344 
6231 280 138 650 377 357 301 

62311 280 138 650 377 357 301 
623110 280 138 650 377 357 301 

6232 191 117 102 15 337 21 
62321 168 - 102 8 251 - 

623210 168 - 102 8 251 - 
62322 23 117 - 7 86 21 

623220 23 117 - 7 86 21 
6233 133 71 1249 99 141 4 

62331 133 71 1249 99 141 4 
623311 2 54 895 - 118 - 
623312 131 17 354 99 23 4 

Table 1b. Current SDC treated publication table viewed by the public 

NAICS 
code County 1 County 2 County 3 County 4 County 5 County 6 

623 604 328 2100 x 835 344 
6231 x x 650 x x 301 

62311 x x 650 x x 301 
623110 x x 650 x x 301 

6232 x x 102 x 337 x 
62321 168 - 102 x 251 - 

623210 168 - 102 x 251 - 
62322 x x - 7 86 x 

623220 x x - 7 86 x 
6233 x x 1249 99 x x 

62331 x x 1249 99 x x 
623311 x x 895 - x - 
623312 x x 354 99 x x 

"x"s are cells not disclosable due to disclosure 
control. 

Table 1c. Proposed new publication table with suppressed cells replaced by 

FIs 

NAICS 
code County 1 County 2 County 3 County 4 County 5 County 6 

623 604 328 2100 250-499 835 344 
6231 250-499 100-249 650 250-499 250-499 301 

62311 250-499 100-249 650 250-499 250-499 301 
623110 250-499 100-249 650 250-499 250-499 301 

6232 100-249 100-249 102 0-19 337 20-99 
62321 168 - 102 0-19 251 - 

623210 168 - 102 0-19 251 - 
62322 20-99 100-249 - 7 86 20-99 

623220 20-99 100-249 - 7 86 20-99 
6233 100-249 20-99 1249 99 100-249 0-19 

62331 100-249 20-99 1249 99 100-249 0-19 
623311 0-19 20-99 895 - 100-249 - 
623312 100-249 0-19 354 99 20-99 0-19 
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This proposal publishes previously suppressed employment levels, regardless of whether a cell is a primary or secondary cell, 

in FIs, see Table 1c. From visualizing the table we quickly notice the benefit from this approach, (1) all cells are furnished 

with some numerical information (2) ordinal categories of the FI cells provide clear “level of magnitude” of cell values for 

comparison that would have been completely unavailable under suppression. More knowledge about employment is obtained 

from these consistent categorizations of suppressed cells. However, this approach also increases the risk of disclosing 

information from individual respondent to this survey. These risks include:  

1. Attackers may obtain more precise estimates of primary cells through analyzing additive relationships existing in the 

table given additional information is provided. This is a serious problem. The attacker could estimate cell values 

through additive relationships in the table, i.e. the summed marginal of the rows and columns, and the sums among 

the hierarchical structures in a table through automated LP methods now available in computer programs. FI would 

make it easier for experienced users to combine their knowledge on an industry from other sources with these 

relationships to make estimates of individual reporters. To deal with this problem under the complete suppression 

assumption, such as the solutions to CSP, researchers developed sophisticate methods using linear programming (LP) 

and mixed integer linear programming (MILP) techniques to select additional cells to be completely suppressed, in a 

way such that all primary cells will be protected and the overall loss of information is minimized. However under 

the current proposal, by giving out the ranges or bounds of previously suppressed cells, attackers could improve 

their estimates of the primary cells that current CSP methods are to protect by incorporating additional information 

provided by FI bounds into their LP models. Additional secondary suppressions might have to be made. 

2. Data users that are also contributors to publication cell may gain closer estimates of other contributors to the cell. As 

we know the precision of estimates to contributors of a cell made by other contributors to a cell defines the 

confidentiality sensitivity measure, i.e. higher the precision of the estimate, more sensitive the publication and vise 

versa. By knowing the published bound of primary cells, in this case, the FI bounds, a user and contributor to a cell 

may subtract its own value from either ends of the FI to have an estimate of another contributor of the cell. In the 

case where dominate contributor is present the estimate could come close, though the estimator can not be 100% 

sure without additional knowledge from other sources. Therefore the confidentiality sensitivity of the cell may 

significantly increase depending on the composition of contributors in the cell.  

3. For non-single primary cells with the number of contributors below the usual threshold, for example, 2 or 3, 

published fixed interval bounds sometimes narrows the estimates of the dominate contributors made by other 

contributors within the cells. For example, in a cell with two contributors in which one is dominate, the smaller 

contributor is able to subtract its value from the published upper bound of FI and obtain a fairly close estimate of the 

dominate contributor. 

4. For single count cells, one end of the fixed published range may be too close to the actual value of the single 

contributor. The contributor’s value could even be the exact value of the boundary value of the FI. For example, a 

company with 18 employees could be the only 6-digit NAICS business within a county. The published value for this 

industry-by-county cell is 0-19. This company may or may not be comfortable with the published interval, even 

though the published employment level is in the form of a range, instead of an exact value. 

We will focus on finding a solution to reduce risk 1 in this paper. The problem associated with risk 2 derives directly from 

the publication bounds of the primary cells and has nothing to do with any additive relationship existing in the table. 

Changing the bounds completely, or suppressing these primary cells completely is the only solution to the problem. However 

given all primary sensitive cells are published in FIs, no contributor to a primary cell can estimate a range of the value of 

other contributors with certainty. This additional doubt created by the boundaries adds a level of protection for all primary 

cells that were not available under complete suppression. Likewise, for risk 3, primary cells published in FIs would also 

provide additional ambiguities to the estimates made by any contributor of a cell or outside attackers to the value of other 

contributors. These ambiguities in the form of interval values, that would have been precise values under the CSP case, 

ensure any contributor is unable to estimate the “confidence interval” of other members with 100% precision. For risk 4, 

depending on the tolerance level of the sole contributor to a cell, we could choose to either suppress the count or the cell 

value to eliminate this risk. 

To reduce risk 1, we start searching solutions made to solve CSP, since the risk 1 arises from the additive relationships in the 

table and is similar to CSP solution that have been implemented in some BLS survey programs. Our current knowledge 
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indicates CSP problem has been established by researchers as a MILP problem, see Kelly (1990). Exact solution to MILP 

model belong to the class of the strong NP-hard problem, (Kelly, Golden et al. 1992; Kao 1996), meaning that it is very 

unlikely an algorithm for the exact solution of CSP exists that guarantee a solution in polynomial-time for all practical 

statistical tables. The number of computations required for solving the CSP in MILP model grows exponentially with the size 

of the table. Therefore it will not be an option to protect large tables, as stated in Giessing (2001). For example, as pointed by 

Dula, Fagan, and Massell (2004), there are )12)(( +× knm number of variables for a nm× table with k primary cells. This 

is about 20 million variables for a  table with 1000 (10%) protected primary cells. This is beyond what today’s 

fastest computer can carry out in a reasonable period of time. Other heuristic solution procedures such as the network flow 

method, see Cox (1980 and 1995), for 2-dimensional tables, multi-commodity network flow method for n-dimensional tables, 

see Castro and Nabona (1996) and hypercube method by Repsilber (1994) and Giessing (2001) have been proposed. These 

heuristic methods only provide sub-optimal solutions as pointed by Castro (2001). Fischetti and Salazar (1999) proposed a 

solution using branch-and-cut algorithm as one of the mathematical programming techniques to reach a solution with proven 

optimality on 2-dimensional tables with up to 500 rows and 500 columns. The problem is solved in a few minutes on a 

standard PC. Fischetti and Salazar-Gonzales (2000) extended their work to other tabular data including k-dimensional table 

with k>2, hierarchical tables, linked tables etc., using branch-and-cut based procedures. Alternatively, instead of completely 

suppressing table cells, Salazar (2001); Fischetti and Salazar (2003) proposed a “partial cell suppression” method that will 

publish a subset of table cells with variable estimation intervals. It has the advantage of having a polynomial-solvable 

solution that not only minimizes information loss but also saves the auditing phase after the selection. Though FIPP and CSP 

shares the same MILP model, unfortunately, so far we think all of the above mentioned secondary cell selection methods do 

not apply directly to selecting protecting cells (PCs) that are to be published in FIs, neither optimally nor heuristically. The 

reason is that these models can not accommodate the knowledge of the FI bounds. An optimal or near optimal selection 

method based on MILP models is yet to be found. 
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In this research we will propose an iterative “selection-improvement” algorithm, which improves cell selection upon each 

previous suppression pattern until all primary cells are sufficiently protected. All of the selection-improvement steps begin 

with procedures already implemented in BLS QCEW program. This approach is pragmatic since at the production level the 

program office does not need to completely re-program computers for a new linear programming based cell selection routine, 

except for adding some additional auditing and cell selection steps. Though no claim of optimality is made in this paper, this 

method does make publication of tables with FIs realistic, and, as the evaluation at the end shows, there aren’t significantly 

more cells published as FIs than the number of cells completed suppressed. After describing our procedure, we will provide 

an evaluation study using actual employment data from a U.S. state. We will compare the results with current suppression 

methods, look into convergence rates, level of information loss and computer programming difficulties associated with 

various cell selection methods. 

The Selection-Improvement Algorithm 

The iterative selection-improvement algorithm has two stages at each iteration, (1) selecting PCs and (2) conducting an audit 

on the publication table with the newly selected PCs in FIs. If the audit finds any primary cell is still at risk, the algorithm re-

iterates by selecting more PCs and conducting another audit until all primary cells are protected. The initial set of PCs is the 

set of cells selected through one of the CSP methods. In case the iterations fail at the end, i.e. no candidate PCs available for 

selection while there are still unprotected cells, the method defaults back to the usual CSP solutions targeting only the 

remaining exposed cells. The steps of the algorithm are summarized as follows: 

Step 1.  Identify primary and secondary cells in a table via a CSP method and publish them in pre-defined FIs.   

Step 2.  Apply linear constrained optimization to identify those primary cells with disclosure risks.  

Step 3.  For those primary cells at risk, select additional cells that have not been selected previously from the 

publication table and publish them in FIs. Three specific methods are proposed for this research and 

will be briefly described in following paragraph and sections. This is the ‘selection step”. 

Step 4.  Apply linear constrained optimization again to check if any primary cell in the original table is still at 

risk. If yes, return to step 3; otherwise EXIT the algorithm, the table is successfully protected. This is 

the “audit step”. 

Step 5.  If the step 2 – 4 iteration fails to protect every primary cells, i.e. no further unsuppressed cells available 

for selection while there are still disclosed primary cells, use any solution method to CSP, i.e. 

completely suppress these exposure primary and corresponding secondary cells. 

 5



 

 

 
 

 

 

 

 

 

The following diagram illustrates the algorithm.  

Figure 1. Proposed FIPP Solution 

There are several alternative methods can be used to select additional PCs in Step 3. We can randomly select cells that are 

within the same row or column of the exposed primary cells, or we can select through more complex MILP models and 

mathematical programming techniques. We would like to minimize either the number of cells to be selected or the total value 

of the selected cells. In this paper we studied the following three methods in the selection step: the Systematic, Single-Source 

Shortest Path (SSSP) and the Random Selection methods. The methods are briefly described below and in more detail in the 

next section: 

1. Systematic Method. To minimize values published in intervals, this method selects the smallest cell among all cells 

that form additive relationship with two selected exposure cells that need further protection that has not been 

suppressed during the previous iteration(s). This cell is published as a pre-defined FI. Default to Random Selection 

Method (see 3 next) at the end if this method fails. 

2. Single-Source Shortest Path (SSPS) Method. This method models the table as a network similar to Traveling 

Salesman’s Problem (TSP), treat all primary exposure cells on a table as destinations of a traveling map. The 

method aims to find the shortest path through these destinations, to minimize the total cell values expressed in FIs. 

To make this TSP solvable for all tables, the method fixes the order of the destinations or vertices on the table 

network. The method only needs to find the shortest path connecting the order-fixed set of vertices to form a closed 

“loop” with minimized path. Publish all cells that are not already selected in previous iterations on the chosen loop 

in FIs. Default to Random Selection Method if this method fails at the end. 

3. Random Selection Method. This method randomly selects a cell among all cells that form additive relationship with 

the primary exposure cells. The candidate cells are cells that are either in the same row or column as the primary cell. 

If all cells forming additive relationships are already selected during previous iteration(s), or it by itself is the only 

decent from the higher hierarchy, go one hierarchy step higher until additional protecting cells can be found through 

additive relationships. Randomly select protecting cells among the candidates, publish these and all cells along the 

hierarchical searching path as FIs. 

In addition to providing a valid solution, the FIPP algorithm introduced here is easy to implement in production, since it 

simply combines separate existing confidentiality protection procedures, such as the complementary cell suppression 

techniques and auditing of tabular data through linear programming. It requires less software changes in the survey 

production environment because the only change to current complementary cell selection procedures is the addition of 

auditing cycles. The difficulty of selecting additional PCs could be simple, for the Random Selection Method, or modestly 

complex, for the SSSP. The auditing of a table during any stage of the process can be done through available table auditing 
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software tools. Programming work for selecting PCs is only need to be done once and be reused later. More importantly, this 

method does not alter the actual micro data behind the tabular publication, as that of methods like adding noise to the micro 

data, which may add unwelcome noise to even safe cells.  

 

 

Methods to Selection Additional PCs at the Selection Step 
This section provides more detail and some justifications for the additional PC selection methods at the “selection step”. 

There are other possibilities than what we are describing here, some of them are better than the others; we choose the 

following three to discuss as they represent different levels of difficulty. Once the selection step is done, the “audit step” of 

identifies publication cells which have estimated intervals narrower than the required protection range according to our 

chosen confidentiality protection rule. We denote the set of cells with exposure risk by their indices as },,{ 1 piiE ⋅⋅⋅= , 

where i ’s are cell indices in a publication table. We need to select additional PCs among cells that are not published 

previously in intervals, and publish them in intervals in the next iteration(s). We denote in the k th iteration the additional 

subset cells of E  that are still at risk as , =0, 1, 2, …,kE k K , NK ∈ , such that KEEEEE ⊇⊇⊇⊇ ...210 . We say 

a publication table is “safe” if and only if Ο=KE  and K  is finite. Notice we restrict our selection of additional set of PCs 

targeting only at step , i.e. within previous risk cell subsets which are subsets of , though audit at th iteration may 

indicate an exposure risk cell(s) that are outside of . This is possible because secondary selection method does not 

guarantee protection of primary cells if secondary cells are published in intervals. Now that more cells are published in the 

form of FIs, cells that previously had no exposure risk now have exposure risk, since more information are available to the 

underlying LP model. We take this approach to make monitoring the iteration process easier by counting only those cells 

contained in . We also denote the set of PCs selected at k th iteration as , k=0, 1, 2, …,

kE k kE k

kE

E kF K , . s are mutually 

exclusive given the set indices are different.  is an empty set,  is the first PC set etc.,  is the last set of PCs selected 

when the condition is met etc. is the final set of all PCs selected for the entire table. 

NK ∈ kF

0F 1F KF
Ο=KE kFU

Systematic Method. To select additional PC to protect all exposure cells found in the last iteration,, Systematic method 

begins by randomly selecting a pair of cells in , say , where kE ),( qp ii qp ≠ , then identify all cells  such that they form 

additive relationships with both and . The cell with the smallest cell value among these cells is to be selected and put 

into − nevertheless, we can alternatively select the cell with the smallest number of establishments contributing to the cell. 

In this way one additional PC is selected for every pair of exposure cells in . If this is not possible, for example in the 

case all candidate PC are not available, we need to resort to Random selection method which we will discuss immediately 

next. In case the number of cells in is odd, i.e. there will be one cell does not find a pair within for it, choose the 

smallest cell that forms an additive relationship with that cell.. We then continue the selection step with an audit step.  The 

audit step checks again if  is sufficiently protected by . The cells in  which were not sufficiently protected are left 

to the set , which requires additional PCs during the next iteration. Notice this process will continue if and only 

if , otherwise the table is declared “safe”. During the 

i

qi qi

kF

kE

kE E

E F E
E

0≠E 1

k

k k k

1+k

k +k  iteration, Systematic method repeats itself and select PCs, 

followed by another audit step. Once condition is met, we then publish the entire table with primary cells and cells 

in  in FIs. It is possible however  but 

Ο=E
F Ο≠E

K

kU k Ο=kF , i.e. no further PC is available for selection while the table is 

still not fully protected. This happens because all available PCs have already been selected in previous iterations. In order to 

carry the process to completion, Systematic method uses the Random Selection method (to be discussed later). Random 

Selection method will select additional PCs in a way that will guarantee a full protection at the end of all iterations. 
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SSSP Method. This method differs from Systematic method only in how to select the additional PC set . The iterative 

progress and stopping rule stay the same. This method utilizes an algorithm similar to the single-source shortest path (SSSP) 

algorithm, as explained in Huo (2004, p.308) that finds the shortest path between two vertices on a network connected by 

weighted edges. We view the publication table in the form of closed networks, where table margins form the vertices and the 

cells the connecting edges, for more discussion on statistical table’s network conversion see Cox (1995). Cells in  are 

ordered on the network in a fixed fashion. The ends of the cells in  -- the cells are edges in the connected network, form 

the set of vertices we desire to find the shortest paths to connect them. The path of edges that along this shortest path will 

form the cells in , the PC set in iteration . The order of the vertices are fixed to avoid turning the problem to a Traveling 

Salesman’s Problem that in theory is NP-hard, see Chartrand (1977), though by doing this we are not guaranteed to find the 

shortest path running through all vertices in . During the selection step in iteration, we use an optimized algorithm to 

search through all paths joining the vertices formed by cells in  and select the path with the smallest cell value combined. 

These cells then will be selected to form . The algorithm we use is similar to Dijkstra’s algorithm for SSSP problem, see 

for example that described in Goodaire and Parmenter (1998), which labels the shortest path adjacent to all labeled vertices 

until the destination is also labeled (so called the “labeling algorithm”). Once the selection finishes, an audit step will proceed 

to check if any of  is still at exposure risk. Next iteration will proceed if and only if

kF

kE
E

F k

E
F

E Ο

k

k

kE

k

k

k =KE 0. It is possible ≠kE
0=F

F F
F

 but 

, as explained earlier, i.e. no further PC is available for selection while there still are exposure primary cells. To 

complete the process, SSSP method uses the Random Selection method (to be discussed next). Random Selection method 

will guarantee a full protection at the end of the iterations. 

k

 

Random Selection Method. Random Selection method differs from the previous two methods only in how it selects the 

additional PC set . Systematic method minimizes the number of cells in  in each iteration, while the SSSP method 

minimizes total cell value in . Both the Systematic and SSSP method do not guarantee a solution, because there could be 

no more table cells available for selection before all cells in

k k

k

E  are completely protected. The Random Selection method is 

primarily designed to complete their processes, though it could be used alone from start. Random Selection method selects 

one additional PC randomly among all cells that are not previously selected and also form additive relationships with one cell 

in that needs protection. Usually this cell in is the cell fails the previous two methods. The auditing step will indicate 

if the table is “safe” at the end of step k, i.e. whether

kE Ek

Ο=KE
E E

E

E E

, otherwise the selection-audit iterative process continues.  

When all cells forming additive relationship with cell in are already selected before  is protected, this is very likely 

for cells in  that are the only decedent in a hierarchical structure, Random Selection method chooses to step one or more 

steps up in the hierarchy to find PCs where are available, treating cells along the path as additional primary risky cells put 

into . Random Selection is performed targeting these new primary risky cells as well as the original exposure cells in . 

In practice we found in many instances that a cell with one hierarchy higher than an exposure cell is also an exposure cell 

therefore we have to use Random Selection method quite often in order to carry the whole process to finish. 

k k

k

k k

 

 

Evaluation of the Method Using a Subset of Actual QCEW Data 

We used actual QCEW employment publication tables for evaluating our stated FIPP procedure. This subset of QCEW data 

contains eight major 2-digit NAICS industry sectors in a medium-sized U.S. State. Table 2 displays the distribution of these 

industries and their establishment composition, i.e. the number of establishments and employment levels in each industry 

sector among these 2-digit NAICS industries in this data set. In actual BLS publications, these data are published in tabular 

forms separately in multi-dimensional table formats classified by county and 6-digit NAICS industry, as well as by 

establishment size group, metropolitan statistical area (MSA) and ownership types. We used only the 2-dimensional 

employment table classified by county and hierarchical NAICS code, from 2 to 6-digit, to demonstrate our algorithm. Uses of 
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2-diminensional table may limit our evaluation conclusion, since multi-dimensional publication tables are “connected”, or in 

other words there are more additive relationships existing than what we considered. Nevertheless these additional additive 

relationships are identifiable. Once they are defined, we can always incorporate them in the model. Therefore we believe with 

some modification our method applies to tables with any dimensions and we should expect the number of cells in FIs 

somewhat more than we report here. Table 3 displays a portion of this publication table that a user may have seen in BLS 

publications. In this table the cells marked with “x” are suppressed cells due to primary and secondary suppressions. In this 

evaluation, we will apply our FIPP procedure to the data and compare their performance with that of the complete 

suppression.  

 

 

  

 

 

 

 

Table 2. Study industry establishment population distribution 

NAICS 
code Industry # of Establishments Employment 

31-33 (34) Manufacturing 3,847 158,398 

44-45 Retail Trade 15,563 288,980 

48-49 Transportation and Warehousing 3,004 61,016 

51 Information 704 16,805 

52 Finance and Insurance 6,942 138,400 

53 Real Estate and Rental and 
Leasing 4,504 45,839 

54 Professional- Scientific- and 
Technical-Services 14,955 191,343 

62 Healthcare and Social 
Assistance 11,326 265,607 

Total 60,845 1,166,388 

It is obvious from the computing point of view that our solution poses some computing complications given the lack of 

available software, in the steps to produce table summary, formation of LP models and finding optimized solutions for the 

models etc. We will briefly describe here the computing procedure we took. The whole process is an integration of various 

computing tools that can carry the process to conclusion, though somewhat cumbersome. This summary below may be 

helpful for researchers interested in applying our method. 

Software Tools Used to Select PCs and Audit Table 
Modeling the linear additive relationships of the test publication table in the forms of a constrained linear optimization 

problem can be done through some mathematical programming languages, such as AMPL, MPS, GAMS etc.. Many 

commercial or free LP software are available to solve such models, Langohr and Gomez (2005) contains a good summary of 

solvers that implement these modeling formats including a web-based free solver at the Argonne National Laboratory, the 

NEOS (http://www-neos.mcs.anl.gov/). We used an approach for our problem that integrates free LP routine library lp_solve, 

see Berkelaar and Dirks et al. (2005) with S-plus® and Matlab® where lp_solve served as the Mixed Integer Programming 

(MIP) solver. lp_solve is a free (albeit GNU lesser general public license), open source MIP solver, with user manuals and 

FAQ information is available for downloading at http://groups.yahoo.com/group/lp_solve/ . It is a software programming 

routine library, called the API that can be called from almost any programming language to solve MIP problems, among 

them are C, C++, Pascal, Delphi, Java, VB, C#, VB.NET, Excel. There are two ways to pass the data to the library, via the 

API or input files. Standard lp_solve supports several input files types such as the commonly known MPS format, but it is not 

very readable. The format we used is the lp format that is more readable. We also found it is easier to use Matlab® as a 

medium when a publication has to be converted to lp format. We used a driver program called lp_solve that is callable from 

Matlab® via an external interface or MEX-function. As such, it looks like lp_solve is fully integrated with Matlab®. The 

complete interface of the driver is written in C so it has maximum performance.  

For a quick note on how we process the data through these computer tools: we first put the raw micro data through primary 

and secondary suppression selection using software tool Tau-Argus, see Hundepool, Willenborg et al. (2004). The suppressed 
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table is then formatted to lp format in S-plus® to be used in Matlab®. In Matlab® we called solver lp_solve to conduct the 

audit of the table. If the iteration is not finished, the audited table is passed back to S-plus® and again we select additional 

PCs with the three methods we stated earlier in this paper. S-plus® and Matlab® were used to convert the publication table 

between publication table and LP model input formats. Additional PCs are selected within S-plus® where additive 

relationship of the entire publication table is kept. Unless the cycles successfully protected all primaries, the cycle should 

reiterate itself continuously. The convergence is guaranteed through the Random selection method. The software tools are not 

automatically connected to carry out the entire process so we have to manually transfer files between them. This is 

fortunately not difficulty since the number of iterations took only between 2 and 5, as we expected. The processing speed and 

virtual memory of S-plus® limits the size of the data we can process, which is another reason we decide to start with a single 

state data. This integration and task flow accomplished by each software tool is illustrated in the flow chart in Figure 2. 

 

 

 

 
Figure 2. Integration of programming tools for the selection-improvement cycle 
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Table 3a. A sample section of the evaluation data set as it is currently published—slightly perturbed for confidentiality 

reasons 

Counties of a U.S. State NAICS 
code Total County 

1 
County 

2 
County 

3 
County 

4 
County 

5 
County 

6 
County 

7 etc. 

… … … … … … … … …  
 

 
 

 

 

… … … … … … … … … 
451 13940 113 1758 2691 111 x 241 64 

4511 9070 82 1121 1699 x x 166 x 
45111 4187 26 703 773 89 - 51 51  

 
 
 

 

451110 4187 26 703 773 89 - 51 51 
45112 2648 x 274 451 x x x - 

451120 2648 x 274 451 x x x - 
45113 1237 x 110 302 - x x x 

451130 1237 x 110 302 - x x x  

 
 
 

 

45114 998 x 35 173 - - 38 x 
451140 998 x 35 173 - - 38 x 

4512 4870 31 637 992 x - 75 x 
45121 3415 x 504 444 x - x x 

451211 3193 x x 438 x - x x 
451212 222 x x 6 - - - x  

 

 

          

45122 1455 x 133 548 x - x - 
451220 1455 x 133 548 x - x -  

 … … … … … … … … … 
… … … … … … … … … 

Total 1166388 15589 98129 190226 7524 5018 22485 12171 etc. 

"x" are nondisclosable data due to primary and secondary suppressions 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Table 3b. The same section of the evaluation data set as it is published under FIPP method 

Counties of a U.S. State NAICS 
code Total County 

1 
County 

2 
County 

3 
County 

4 
County 

5 
County 

6 
County 

7 etc. 

… … … … … … … … …  
… … … … … … … … … 

451 13940 113 1758 2691 111 0-19 241 64 
4511 9070 82 1121 1699 20-99 0-19 166 20-99 

45111 4187 26 703 773 89 - 51 20-99 
451110 4187 26 703 773 89 - 51 20-99 
45112 2648 0-19 274 250-499 0-19 0-19 0-19 - 

451120 2648 0-19 274 250-499 0-19 0-19 0-19 - 
45113 1237 0-19 110 302 - 0-19 20-99 0-19 

451130 1237 0-19 110 302 - 0-19 20-99 0-19 
45114 998 20-99 20-99 173 - - 38 0-19 

451140 998 20-99 20-99 173 - - 38 0-19 
4512 4870 31 637 992 0-19 - 75 0-19 

45121 3415 20-99 504 444 0-19 - 20-99 0-19 
451211 3193 20-99 250-499 438 0-19 - 20-99 0-19 
451212 222 0-19 20-99 6 - - - 0-19 
45122 1455 0-19 133 548 0-19 - 20-99 - 

451220 1455 0-19 133 548 0-19 - 20-99 - 
… … … … … … … … … 
… … … … … … … … … 

Total 1166388 15589 98129 190226 7524 5018 22485 12171 etc. 
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Summary of Evaluation Results 
Each method is carried out to the end without having to apply Random Selection method.  For cell suppression , there are 

9979 (59% of total) cells, or 4,535 (7.5% of total) establishments and 162,368 (14% of total) of employment value that are 

completely suppressed.  With the Systematic Selection method, as shown in Table 4, the entire publication table is 

successfully protected at the end with only two additional iterations beyond the traditional secondary suppression stage. 

However the number of cells published in FIs is quite large, not surprisingly since the procedure incorporates the existing 

secondary suppression methods. For the Systematic Selection method, 10,199 or 60% of all publication cells are selected for 

FI publication, they account for 6,337 establishments or 10% of all establishments in the table and 180,742 or 15% of total 

employment in the table. However, In terms of number of publication cells suppressed versus the number of establishments 

and total values in FIs, the difference between FIPP solution and complete suppression solution is not very large.  

 

Separately for SSSP method and Random Selection method, see summary in Table 5, there are about 64% and 69% of all 

cells are in FIs respectively. In term of number of iterations required to reach complete protection of the publication table, 

Systematic Selection takes 2, SSSP takes 3 and Random Selection takes 5. The reason for the difference in the number of 

iterations could be attributed to the relatively inefficient methods of picking addition PC cells used by the latter two methods. 

In particular, the Random Selection method does not taken into consideration of the magnitude of the qualified cells. For the 

total number of additional cells selected beyond the initial stage, SSSP and Random Selection methods selects more cells as 

FIs than the Systematic method, though the Random Selection method selects significantly more. Table 6 summarizes and 

compares the total number of cells and values contained in FIs under each of the three different selection methods.  
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Table 4. FIPP selection-improvement cycle progression – the Systematic method 
Publication Table with p=15%, threshold=3   

Status Number of cells Number of establishments Employment Level 

Safe 8,845 (52%) 59,440 (98%) 1,095,071 (94%) 

Primary 8,033 (48%) 1,405 (2.3%) 71,317 (6.1%) 

Secondary 0 (0%) 0 (0%) 0 (0%) 

Total 16,878 (100%) 60,845 (100%) 1,166,388 (100%) 

    
  Secondary Suppression Network Method 

Status Number of cells Number of establishments Employment Level 

Safe 6,899 (41%) 56,310 (92%) 1,004,020 (86%) 

Primary 8,615 (51%) 1,755 (2.9%) 86,358 (7.4%) 

Secondary 1,364 (8.1%) 2,780 (4.6%) 76,010 (6.5%) 

Total 16,878 (100%) 60,845 (100%) 1,166,388 (100%) 

    
  

    
 

 
 

 

FI publication -- Iteration 0: Publication Cells 

Status Number of cells Number of establishments Employment Level 

Safe 6,899 (41%) 56,310 (92%) 1,004,020 (86%) 

Primary 8,615 (51%) 1,755 (2.9%) 86,358 (7.4%) 

Secondary 1,364 (8.1%) 2,780 (4.6%) 76,010 (6.5%) 

Exposure 126 (.75%) 725 (1.2%) 7,982 (0.68%) 

Total in FI 9,979 (59%) 4,535 (7.5%) 162,368 (14%) 

Total 16,878 (100%) 60,845 (100%) 1,166,388 (100%) 

FI publication -- Iteration 1 : Publication Cells -- Systematic Method 

Status Number of cells Number of establishments Employment Level 

Safe 6,789 (40%) 54,310 (90%) 987,488 (85%) 

Primary 8,615 (51%) 1,755 (2.9%) 86,358 (7.4%) 

Secondary 1,364 (8.1%) 2,780 (4.6%) 76,010 (6.5%) 

Exposure 7 (.04%) 45 (.07%) 520 (.04%) 

Add'l in FI 210 (1.2%) 1,605 (2.6%) 16,532 (1.4%) 

Total in FI 10,189 (60%) 6,185 (10%) 178,900 (15%) 

Total 16,878 (100%) 60,845 (100%) 1,166,388 (100%) 

FI publication -- Iteration 2: Publication Cells -- Systematic Method 

Status Number of cells Number of establishments Employment Level 

Safe 6,779 (40%) 54,553 (90%) 985,646 (85%) 

Primary 8,615 (51%) 1,755 (2.9%) 86,358 (7.4%) 

Secondary 1,364 (8.1%) 2,780 (4.6%) 76,010 (6.5%) 

Exposure 0 (0%) 0 (0%) 0 (0%) 

Add'l in FI 10 (.05%) 152 (.25%) 1,824 (.16%) 

Total in FI 10,199 (60%) 6,337 (10%) 180,724 (15%) 

Total 16,878 (100%) 60,845 (100%) 1,166,388 (100%) 
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Table 5. FIPP selection-improvement convergence pattern comparison between three methods 

Systematic Selection SSSP Selection Random Selection 

Iteration 
Total 

Publication 
Cells Cells with 

Exposure 
Risk 

Cells in FIs Add'l PCs 
Selected 

Cells with 
Exposure 

Risk 
Cells in FIs Add'l PCs 

Selected 

Cells with 
Exposure 

Risk 
Cells in FIs Add'l PCs 

Selected 

0 16878 (100%) 126 (.75%) 9979 (59%) - 126 (.75%) 9979 (59%) - 126 (.75%) 9979 (59%) - 

1 16878 (100%) 7 (.04%) 10189 (60%) 210 15 10495 (62%) 516 75 11004 (65%) 1225 

2 16878 (100%) 0 10199 (60%) 10 3 10721 (64%) 226 34 11381 (67%) 377 

3 16878 (100%) 0 10772 (64%) 51 14 11525 (68%) 144 

4 16878 (100%) 2 11600 (69%) 75 

5 16878 (100%) 0 11615 (69%) 15 
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Table 6. Cells published as FIs by three difference selection methods compared to CSP method 

  

 

 

 

 

 

 

Systematic SSSP Random Cell Suppression 

Number of iterations to reach 
convergence 2 3 5 NA 

Total number of cells in Fis or 
completely suppressed 10,199 (60%) 10,772 (64%) 11,615 (69%) 9979 (59%) 

Total employment level in FIs or 
completely suppressed 180,724 (15%) 184289 (17%) 188,955 (16%) 162,368 (14%) 

Total number of establishments in Fis or 
completely suppressed 6,337 (10%) 7,362 (12%) 7,971 (13%) 4535 (7.5%) 

Conclusion 

We developed this FIPP solution with the goal to minimize either the total number of cells selected or the 

total value contained in the cells selected to be FIs. However because the initial step is built upon secondary 

cells suppression through CSP solutions and subsequent ad hoc PC selection steps, we probably do not 

achieve this goal. The good news is that all confidentiality rules imposed on the table are well preserved 

and the number of cells released as FIs is reasonable at the conclusion of the algorithm. The last audit step 

on the table clearly demonstrates all primary cells on the table are well protected. With reasonable effort a 

feasible solution can be found to a seemingly unsolvable optimization problem. The success of this method 

relies on the assumption that the number of iteration cycles is not large, since current CSP solutions tend to 

over suppress in the first place. Even with the least inefficient selection method, the Random Selection 

method, only a maximum of five cycles are needed. The complexity of programming, computer usage time 

and manual intervention varies depending on selection method used. We found the Random Selection takes 

the least amount of programming time and manual intervention, SSSP takes longer to run on computer and 

needs more overhead programming effort, and Systematic method requires more manual interaction during 

the process than any of the other two methods, therefore is the most cumbersome to use. It is possible with 

more effort put into the computer programming in the future, we can integrated various parts of the 

software tasks into a single program. This is necessary if our proposal is to be adopted in regular 

publication production environment. 

One other advantage of our method is that a user can specify cells that he or she does not want to be 

published in FIs. Once specified, these cells will be treated as if they are constants in the model. The 

method also allows a user do global coding, i.e. combining categorical variables such that the result will be 

a table with fewer unsafe cells, though this may need to be done before the selection-audit cycles begin.  

We also noticed the following problems with our methods during evaluation of the test data: 

1. For the Systematic and SSSP selection methods, the order of the exposure primary cells during 

each iteration affect the additional PCs selected. In other words, the final set of FI cells could 

possibly be different if the process is run more than once, since the order of exposure primary cells 

entered the local protection cycle may be in a different order. Unless the order of cell entry is fixed, 

which is possible, the process is not repeatable. 

2. The Random Selection method produces a different set of selection cells every time it is run, due 

to the random nature of its selection of PCs in local cycles. This process is not repeatable under 

this method. 

3. Though in theory the methods applies to table with any dimensions and hierarchical structures, as 

long as the additive relationships in the table is constructible, the computing capability we have so 

far limit ourselves to only 2-dimentional tables with hierarchical structure in one dimension. 

Higher dimensional tables require us decomposing the table into lower dimensional tables and 

process lower dimensional tables separately then integrate separate results at the end. We chose 

not to experiment that in this study.  
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Since the test data we used in this study are in reality published as multi-dimensional tables, there are other 

additive relationships in the table we actually did not study. We only used a two-dimensional marginal 

table to do the evaluation. Indubitably more cells will be published in FIs and the programming working 

will be more demanding if the multi-dimensionality is taken into consideration. This is stated in the 

limitation 3 above. With many other practical issues with publishing cell in FIs not studied here, more 

works have to be done before we can adopt this method for QCEW data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, this paper demonstrates with actual data set that our method provides one feasible solution to 

a seemingly difficult problem. We think our SDC method has good potential for future use in tabular 

statistical publications.  
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