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Abstract 

Conventional multiple imputation (MI) (Rubin, 1987) replaces the missing values in a dataset by m > 1 sets of simulated 
values. We describe a two-stage extension of MI in which the missing values are partitioned into two groups and imputed N = 
mn times in a nested fashion. Two-stage MI divides the missing information into two components of variability, lending 
insight when the missing values are of two qualitatively different types. It also opens new possibilities for making different 
assumptions about the mechanisms producing the two kinds of missing values. Point estimates and standard errors from the N 
complete-data analyses are consolidated by simple rules derived by analogy to nested analysis of variance. After reviewing 
the theory and practice of two-stage MI, we illustrate the method with a simple analysis of binary variables from a 
longitudinal survey. 

Introduction 

Missing values in a dataset may be of two different types. In response to a sensitive question in an interview survey, for 
example, some participants may simply refuse to answer, whereas others may say, “I don’t remember.” Other examples 
include unit versus item nonresponse, planned missingness (e.g. as would arise from double sampling or matrix sampling) 
versus unplanned missing values, and mortality versus dropout for other reasons. In this article, we explore a two-stage 
version of Rubin’s (1987) multiple imputation in which we impute the first kind of missing value m times; then, for each 
imputation of the first type, we impute the second type n times, treating the imputed values for the first type as if they were 
fixed and known. 

Imputing in stages has several potential advantages. From a computational standpoint, it is sometimes possible to identify a 
small set of missing values which, if known, would simplify the process of imputing the rest. An application of this type is 
described by Rubin (2003), who first completed a monotone pattern by computationally intensive iterative procedure, then 
imputed the remaining missing values by a less demanding, non-iterative method. Second, two-stage MI allows us to identify 
the amount of uncertainty in population estimates contributed by each type of missing value, which may have important 
implications for interpreting current results and planning future studies. 

Finally, two-stage MI may allow us to posit different assumptions about the probabilistic mechanisms generating the two 
types of missing values. Suppose that some values are missing by design but others are missing for reasons beyond the data 
collectors’ control; the missing at random (MAR) condition (e.g., Little and Rubin, 1987) is known to hold for the former but 
not the latter. With two-stage MI, it may be feasible to impute for unplanned missing values under some alternative non-
MAR methods, then impute for planned missing values under an MAR assumption. In that case, however, we would need to 
clarify what it means for some missing values to be MAR and others to be non-MAR. Making this notion precise requires us 
to extend Rubin’s (1976) concepts of MAR and ignorability to mechanisms that partition the complete data into three parts 
(observed, missing for one reason, missing for the other reason). A full treatment of that topic has been given by Harel (2003) 
but is beyond the scope of this paper. 

In many cases, two-stage MI can be carried out by repeatedly applying algorithms and software designed for conventional 
MI, such as the missing-values library in S-PLUS or SAS PROC MI. Once the N = mn  imputed datasets exist, they are 
analyzed by complete data methods, and the results are combined by simple algebraic rules derived by Shen (2000). In the 
remaining sections, we describe in generic terms the methods for generating the imputations and combining the results; we 
also discuss how to estimate the amount of missing information due to each set of missing values. We conclude with a 
simple example involving a binary variable from two adjacent waves of the National Crime Survey. 
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Imputing in Two Stages 

Let Ycom = (Yobs ,Ymis ) denote the complete dataset, part of which is observed (Yobs ) and part of which is missing (Ymis ) . In 
conventional MI, we would typically propose a parametric model for the complete data, say P(Y |θ ), and a Bayesian prior com 

(1) (2) (m)distribution P(θ ) for the unknown model parameters. The m multiple imputations, Y ,Y ,K,Y , are independent draws mis mis mis 
from the posterior predictive distribution 

P(Y | Y ) = ∫ P(Y | Y ,θ ) P(θ | Y ) dθ ,mis obs mis obs obs 

which reflects uncertainty about θ as well as Ymis . Computational algorithms for producing these draws under a variety of 
multivariate models are described by Schafer (1997). Software for MI is available from a variety of commercial and non-
commercial sources; see Horton and Lipsitz (2001) for a review. 

A BNow suppose that the missing data are divided into two parts, Y = (Y ,Y ) . To carry out two-stage MI, we first draw mmis mis mis 
A(1) A(2) A(m) Aindependent values Y ,Y ,K,Y the posterior predictive distribution P(Y | Y ) . Then, for each of these, we draw mis mis mis mis obs 

B( j,1) B( j,2) B( j,n) B A( j)n conditionally independent values Y ,Y ,K,Y from P(Y | Y ,Y ), j = 1,K,m . Care must be taken to mis mis mis mis obs mis 

reflect uncertainty in the parameterθ at each stage. The resulting N = mn completed datasets, 
( j,k ) A( j) B( j,k )Y = (Y ,Y ,Y ), j = 1,K,m, k = 1,Kn ,com obs mis mis 

B( j,1) B( j,2) B( j,n) Aare not independent, because each block or nest Ymis ,Ymis ,K,Ymis contains identical values for Ymis . Notice, 
(1,1) (2,1) (m,1)however, that gathering the first completed dataset from each nest, Y ,Y ,K,Y , does give us m independent com com com 

imputations from P(Y | Y ) . Therefore, we can perform two-stage MI by first creating m conventional imputations for mis obs 
B AYmis , then discarding Ymis and recreating n −1 additional imputations of it for each imputed version of Ymis . 

In this discussion, we have not made use of the response indicators, the set of binary random variables that indicate for each 
element of Y whether the item is observed or missing. In conventional MI, we would need to condition upon the response com

indicators if the missing data were not MAR (Rubin, 1987). With two-stage MI, we might also need to consider the process 
that bifurcates Ymis ; that is, we might need to condition upon the set of three-level indicators that partition Ycom into Yobs , 

A BYmis and Ymis . Using an extended theory of ignorability presented by Harel (2003), one can show that these three-level 
A Bindicators can ignored in two-stage MI if (a) Ymis is MAR, and (b) the process that dividesYmis into Ymis and Ymis does not 

depend on any portion of Ymis . Condition (b) allows a data analyst classifies the missing values into groups on the basis of 
Ainformation gleaned from Yobs  or from the realized pattern of nonresponse—for example, by taking Ymis to be a set of missing 

values that would complete a monotone pattern, as suggested by Rubin (2003). Other conditions under which part or all of 
the missingness mechanism can be ignored in one or both stages of two-stage MI are described by Harel (2003). 

Consolidating Results from Post-Imputation Analyses 

After imputation, each of the N = mn imputed datasets from two-stage MI should analyzed as if it had no missing values. 
Estimates and standard errors from these analyses may then be consolidated using Shen’s (2000) extension of Rubin’s (1987) 

ˆ ( , ) ( , )method for conventional MI. Let Q denote a scalar population quantity to be estimated, and let Q j k and U j k denote the 
point and variance estimates for Q calculated from the ( j,k) th completed dataset. The overall point estimate for Q is 
simply the grand average 

1 m n ˆ ( j,k ) 1 m ( j, ⋅)Q⋅⋅ = ∑ ∑ Q = ∑ Q ,
j=1 k=1 j=1mn m 

( j, ⋅) 1 n ˆ ( j,k )where Q = 
k 1 

Q . The uncertainty associated with this overall estimate involves three components: the 
n ∑ = 

estimated complete-data variance 

Page 92 



 

  

     

       
     

 
 

   
 

         
     

       

   

     

    
 

  
   

     

 
       

    
   

    
 

 
 

          
              

⋅⋅ 

⋅⋅ 

1 m n ( j,k )U = U ,⋅⋅ ∑ j=1∑k=1mn 
the between-nest variance 

1 m ( j,⋅) 2
B = ∑ = (Q − Q⋅⋅ ) ,

j 1m −1 
and the within-nest variance 

1 m 1 n ˆ ( j,k ) ( j,⋅) 2
W = ∑ ∑ (Q − Q ) .

j=1 k=1m n −1 
The total variance is 

⎛ − 1 ⎞ ⎛ 1 ⎞T = U ⋅⋅ + ⎜1 ⎟W + ⎜1+ ⎟B ,⎝ n ⎠ ⎝ m ⎠ 
and inferences about Q are based on the Student’s t-approximation (Q − Q ) T ~ tν with degrees of freedom 

2 21 ⎛ (1−1 n)W ⎞ 1 ⎛ (1+1 m)B⎞ν = ⎜ ⎟ + ⎜ ⎟ . 
m(n −1) ⎝ T ⎠ m −1⎝ T ⎠ 

Q̂ ( j,k )These rules arises from analysis-of-variance techniques, regarding the ’s as measurements from a balanced experiment 
Awith Ymis as a random blocking factor. For the special case of n = 1 , the term involving W drops out of the total variance, and 

the method becomes identical to that of Rubin (1987) for conventional MI with m imputations. 

Rates of Missing Information and Relative Efficiency 

Shen (2000) did not consider rates of missing information, but these rates are easily estimated from the variance components. 
The estimated overall rate of missing information for Q is 

ˆ B + (1−1 n)W r̂λ = = ,
U ⋅⋅ + B + (1−1 n)W 1+ r̂ 

where r̂ = (B + (1−1 n)W) U is the relative increase in variance due to nonresponse. The estimated rate of missing 
B Ainformation due to Ymis if Ymis were known is 

B |A
ˆB |A W r̂λ = = ,B |AU ⋅⋅ + W 1+ r̂ 

B |A ˆA ˆ ˆB |Awhere r̂ = W U ⋅⋅ . The difference λ = λ −λ estimates the amount by which the missing information would drop if 
A ˆA ˆ AYmis became known, and λ λ is the proportionate reduction in missing information if Ymis became known. It is possible for 

λ̂A to be negative, in which case the estimate should be set to zero. 

Rubin (1987) showed that the relative efficiency of a point estimate based on m conventional MI’s to a fully efficient one (i.e. 
−based on an infinite number of imputations) is approximately (1+ λ m) 1 , where λ is the overall rate of missing information 

−for Q . For two-stage MI, one can show that the relative efficiency of Q⋅⋅ lies between (1+ λ m) 1 and (1+ λ (mn))−1 , 
Areaching the upper bound when Ymis carries no information about Q . The degrees of freedom for estimating the within- and 

between-nest variance components are approximately equal when n = 2 . In practice, we typically set n = 2 and then choose 
m large enough to achieve a reasonable level of efficiency. As with conventional MI, only a few imputations are usually 
needed to achieve a highly efficient estimate. Unfortunately, the estimated rates of missing information can be rather noisy 
when m is small. Asymptotic results on the variability of these estimated rates are given by Harel (2003). 

A Simple Example 

The data in Table 1, previously analyzed by Kadane (1985) and Schafer (1997), were obtained from the National Crime 
Survey conducted by the U.S. Bureau of the Census. Occupants of sampled housing units were asked whether they had been 

Page 93 



  
    

         
 

    

 
  

               
               
             

 
   

        

  
                  

    
    

 

     
  

    
  

 
         

              
         

 

    
 

        
           

    
    

     
    

     

     

     

     

     

victimized by crime in the preceding half-year; six months later, occupants of the same units were asked the question again. 
Of the 765 sampled units, 561 (74%) provided responses at both occasions, 42 (6%) responded only the first time, 38 (5%) 
responded only the second time, and 115 (15%) did not respond at either time. 

Table 1: Victimization status of housing unit occupants in two successive six-month periods 

Victimized second period? 
Victimized first period? No Yes Missing 

No 392 55 33 
Yes 76 38 9 

  Missing 31 7 115 

For simplicity of presentation, we will regard this as a simple random sample from the population of interest. Let Yt denote 
victimization status (1=no,  2=yes)  during period t = 1,2 , and let π ij denote the proportion of units in the population with 

Y1 = i,Y2 = j . Assuming a multinomial model with ignorable nonresponse, the loglikelihood function is 
l = 392 log π + 55 log π + 76 log π + 38 log π + 33 log π + 9 log π + 31log π + 7 log π +115 log π ,11 12 21 22 1+ 2+ +1 +2 ++ 

where ‘+’ denotes summation over a subscript. Maximum-likelihood (ML) estimates computed by the EM algorithm of 
Chen and Fienberg (1974) are π̂11 = .6971 , π̂12 = .0986 , π̂ 21 = .1358 and π̂ 22 = .0685 (Schafer, 1997, pp. 42-45). 

Multiple imputations for missing data in cross-classified contingency tables under the multinomial model can be generated 
using a data augmentation (DA) algorithm, a Markov chain Monte Carlo procedure described by Schafer (1997, Chap. 7). 
This algorithm, which has been implemented in the missing-data library of S-PLUS (Schimert et al., 2001), can also be used 

A Bfor imputation in two stages. To illustrate, we defined Ymis to be the missing values of Y1 and Ymis to be the missing values 
of Y 2 . Using the default prior density 

−.5 −.5 −.5 −P(π ,π ,π ) ∝ π π π (1−π −π −π ) .5 ,11 12 21 11 12 21 11 12 21 

we generated ten imputations in two stages with m = 5 and n = 2 in the following manner. First, we generated five ordinary 
MI's using 100 cycles of DA between imputations. Then, for each of the five datasets, we removed the imputed values for Y2 
and re-imputed them once using another 100 cycles of DA. Frequencies for the ten imputed datasets are shown in Table 2. 

Table 2: Frequencies for victimization status in two periods after two-stage multiple imputation, with estimated odds ratios 
and differences 

j = 1 j = 2 j = 3 j = 4 j = 5 
k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 

No, No 536 531 526 523 528 526 526 530 532 527 
No, Yes 70 75 75 78 71 73 75 71 72 77 
Yes, No 102 92 104 101 108 102 101 107 103 102 
Yes, Yes 48 58 51 54 49 55 54 48 49 50 
α̂ 3.60 4.46 3.44 3.58 3.37 3.89 3.75 3.35 3.52 3.36 
log α̂ 1.28 1.50 1.24 1.28 1.22 1.36 1.32 1.21 1.26 1.21 (SE logα̂) 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

δ̂  .042 .022 .038 .030 .049 .038 .048 .048 .041 .033 

SE(δ̂ ) .017 .017 .018 .018 .018 .017 .018 .018 .017 .018 
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Notice that in each of the blocks j =1,K,5 , the imputed values for the marginal Y1 frequencies are constant. Two parameters 
−1 −1of interest are the odds ratio α = π π π π and the change in victimization rate δ = π −π = π −π . Estimates of 11 12 21 22 2+ +2 21 12 α , logα and δ from each imputed dataset are shown in Table 2, along with standard errors calculated as 

−1 −1 −1 −1SE(logα̂ )= x + x + x + x11 12 21 22 

and 

x ⎛ x ⎞ x ⎛ x ⎞ x xˆ 12 12 21 21 12 21( )  ⎜ ⎟ ⎜ ⎟SE δ = 1− 1− 2 ,2 ⎜ ⎟ + 2 ⎜ ⎟ + 3x x x++ ⎝ x++ ⎠ ++ ⎝ x++ ⎠ ++ 

where xij is the sample frequency of Y1 = i,Y2 = j (e.g. Agresti, 1990). Combining these quantities by Shen’s rules, the 

overall estimate of logα becomes Q⋅⋅ =1.29 with a standard error of T = 0.23 , and the estimate of δ becomes Q⋅⋅ = 0.38 

with a standard error of T = 0.19 . Although these estimates are based only on a small number of imputations, the large 
values for the degrees of freedom ( ν = 345 and ν = 282 , respectively) indicate that the loss of precision relative to estimates 
based on more imputations is slight. For comparison, we computed asymptotic standard errors by evaluating the Hessian of 
the actual loglikelihood at the ML estimate; this loglikelihood method gives logα̂ =1.27 with a standard error of 0.26, and 

δ̂  = .037 with a standard error of .020. 

Although the estimates and standard errors from such a small number of imputations are reliable, the estimated rates of 
missing information are not. To estimate these rates very precisely, we repeated the procedure to create m = 500 blocks of 
n = 2 imputations each. The estimated parameters, standard errors and rates of missing information from this larger 
simulation are displayed in Table 3. 

Table 3: Estimated parameters, standard errors and rates of missing information for crime victimization data from multiple 
imputation with m = 500 and n = 2. 

est SE λ̂ λ̂B|A λ̂A λ̂A λ̂ 
logα 1.27 0.25 .27 .21 .06 .24 
δ .038 .020 .21 .13 .08 .39 

The rates of missing information are intuitively reasonable. First, consider the log odds ratio, which measures the strength of 
association between Y1 and Y2 . Because 26% of the units had missing values for one or both of these variables, we would 

expect the overall rate of missing information to be approximately 0.26, and indeed it is ( λ̂ = .27 ). Because the odds ratio 
can be regarded as a property of the conditional distribution of Y2 given Y1 , recovery of the missing values of Y1 should 

λ̂A ˆB|Aprovide little additional information about this parameter, so we would expect to be much smaller than λ . The 
difference δ , however, is a function of the Y1 and Y2 marginal distributions, so we might expect the overall rate of missing 
information for this parameter to be something like the proportion of units for which Y1 and Y2 are both missing, plus one-

half the proportion of units for which one of the two measurements is missing. Indeed, the estimate ( λ̂ = 0.21 ) is very close 
to .15 + (.05+.06)/2. If Y1 were filled in, Y2 would still be missing for 21% of the units, and indeed λ̂ = .13 is close to one-
half of .21. 

Discussion 

The simple example presented here is not intended to represent a typical application of two-stage MI; we provide it merely to 
illustrate the method and to demonstrate the reasonableness of its results. The method was originally proposed by Shen 

A B A(2000) for computational efficiency when imputation of Y mis is costly but Y mis given Y mis is cheap. Situations of that type 
do exist (e.g. Rubin, 2003). However, we believe that the most valuable contribution of two-stage MI is that opens up many 
new possibilities for interesting and innovative data analysis. Some of these possibilities are listed below. 
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Questionnaires with planned missingness (Raghunathan and Grizzle, 1995) and longitudinal data-collection schedules with 
intentionally dropped occasions may reduce respondent burden and can be very cost-effective; with two-stage MI, one can 
isolate the effects of planned and unplanned missing values to inform decisions about the design of current and future studies. 

Analysis of longitudinal data with nonignorably missing values has received great attention in recent years (e.g. Little, 1995). 
In real applications, it is often reasonable to view the missing values as a mixture, with some missing for reasons closely 
related to the phenomena being measured and others missed for unrelated reasons. With two-stage MI, we can potentially 
separate the effects of the two types of missing values. As shown by Harel (2003), however, what it means for some values to 
be ignorably missing and others to be nonignorably missing needs to be made precise. 

Another important set of applications pertains to data with both measurement errors and missing values. Viewing observed 
items as imperfect measures of unobservable or latent true scores has been fundamental to the social sciences for decades, 
and is the central idea of item-response theory, factor analysis and latent-class modeling. Despite these models' long history, 
the role of missing values in the manifest items remains largely unexplored. We believe that two-stage MI will prove useful 
for investigating not only the relative contributions of response error and nonresponse to overall uncertainty, but how the 
nonresponse and measurement processes interact. 

Finally, two-stage MI can also be used to measure the expected increase in information if a single missing datum or a group 
of missing values were suddenly observed. If this type of analysis were implemented in a survey during the data-gathering 
process, data collectors could identify the nonrespondents who, if converted, would yield the greatest increase in information 
about various population quantities of interest, and then focus their efforts for nonresponse followup on these units. 
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