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A bst ract  

Social and economic data commonly have a nested structure (for example, households nested within 
neighborhoods). Recent ly techniques and computer programs have become available for dealing 
with such data, permit t ing the formulat ion of explicit  mult ilevel models with hypotheses about  
e¤ects occurring at  each level and across levels. If data users are planning to analyze survey data 
using hierarchical linear models rather than concentrat ing on means, totals, and proport ions, this 
needs to be accounted for in the survey design. The implicat ions for determining sample sizes (for 
example, the number of neighborhoods in the sample and the number of households sampled within 
each neighborhood) are explored. 
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1 I nt roduct ion 

There has been an upsurge in interest  in analyzing data in a way that  accounts for the 
naturally occurring nested structure, for instance, in analyzing households nested within 
neighborhoods. Linear models appropriate for such data are called “ hierarchical”  or “ mul-
t ilevel.”  In part , the increased interest  has been sparked by the availability of new software 
that  properly handles the nested structure and facilitates the analyses. There has also been 
a realizat ion that  one can take advantage of the nested structure to explore relat ionships not  
amenable to other approaches. 

If researchers are planning to analyze data from federal surveys using hierarchical linear 
models rather than concentrat ing on means, totals, and proport ions, it  is best  to account  for 
this in the survey design. One important  aspect  of the design is the sample size at  each level 
(for example, the number of neighborhoods in the sample and the number of households 
sampled within each neighborhood). Cost  models can be developed to determine the most  
e¢ cient  allocat ion of the sample. 

To date, there has been only a limited amount  of research on this topic. A key paper is 
Snijders and Bosker (1993). Afshartous (1995) and Mok (1995) did empirical studies for 
part icular datasets. The most  up-to-date account  is given in Chapter 10 of Snijders and 
Bosker (1999). Except  for the author’s art icle (Cohen, 1998), the emphasis has been on 
small single-purpose surveys rather than on large federal surveys. 

This art icle will begin with a brief descript ion of mult ilevel models. No prior knowledge 
of these models will be assumed. The roles of cost  funct ions in survey design will then 
be discussed. There will be a review of t radit ional sample size determinat ion as in, for 



example, Hansen, Hurwitz, and Madow (1953). Extensions of previous work on sample size 
determinat ion for surveys to be analyzed by mult ilevel analysis will be made to est imat ing 
the …xed coe¢ cients in the mult ilevel model and to est imat ing the intraclass correlat ion 
coe¢ cient . 

2 M ult i level  M odels 

Goldstein (1987, 1995), Bryk and Raudenbush (1992), Longford (1993), Hox (1995), Kreft  
and de Leeuw (1998), and Snijders and Bosker (1999) are recommended for book-length 
discussions related to mult ilevel models. 

Consider a simple example. Suppose the household-level model is 

and the neighborhood-level model is 

Yi j  =  ¯ 0j  +  r i j  

¯ 0j  =  °  00 +  u0j : 

The r i j  are mean zero, independent, normally dist ributed random variables, each with vari-
ance ¾2, for the i  = 1; : : : ; nj  persons in neighborhood j . The u0j  are independent  of each 
other and of the r i j  : They are normally dist ributed, each with mean zero and variance ¿2 . 
The ¾2 are the household-level variances, and the ¿ 2 are the neighborhood-level variances. 
This is a two-stage model. We could, of course, have further levels below the household 
(persons, person trips); we could have more levels above the neighborhood (city, state or 
province). 

3 Simple T wo-St age Design wit h a Simple Cost  Funct ion 

In order to gain insight  into the problem, we restrict  our at tent ion to a simple two-stage 
sampling design with a simple cost  funct ion. We select  m neighborhoods, and from each 
of the m neighborhoods, we select  n households (a balanced sample design). It  costs C2 to 
include a neighborhood in the sample and an addit ional C1 for each household sampled at  
the neighborhood. We wish to hold total sampling costs to our budgeted amount  C where 

C =  C2m +  C1mn: 

We refer to the …rst stage units as neighborhoods and the second stage units as households 
throughout  this art icle in order to avoid cumbersome terminology. Of course, the results 
apply much more broadly (for example, to students within schools, to beds within hospitals, 
or to books within libraries). 

In reality we would almost  certainly select  the neighborhoods by a strat i…ed design. Addi-
t ional levels (e.g., cit ies, persons) are possible. Unequal probability sampling might  be used 
at  any level. Our assumpt ion of a balanced sample design (same number of households from 
each neighborhood) would almost  certainly not  hold exact ly, but  we do not  expect  that  our 
results are very sensit ive to this assumpt ion, provided that  the design is not  too unbalanced. 



4 Tradit ional  Sample Size Det erminat ion 

Hansen, Hurwitz, and Madow (1953, pp. 172-73) have developed the formula for the op-
t imal size n for the number of households to sample from each neighborhood. It  applies 
to est imat ing means, totals, and rat ios. A simple approximate version of the formula is as 
follows: s

: C2 1 ½ 
nopt  =  ¡  

£  ; 
C1 ½ 

(1) 

where ½ is the measure of homogeneity, also called the intraclass correlat ion coe¢ cient . The 
number of neighborhoods sampled is then 

In the two-level set t ing, we have 

C 
mopt  =  :

C2 +  C1nopt  

¿2 
½ =  ;

¾2 +  ¿ 2 

where ¾ is the household level variance and ¿2 is the neighborhood level variance. It  will 
also be convenient  to work with the variance ratio !  de…ned by !  =  ¿ 2=¾2. In terms of the 
variance rat io, (1) becomes 

2 

s
: C2 1 

nopt  =  £  ; 
C1 !  

(2) 

so that  the opt imal number of households to sample from each neighborhood in the t radi-
t ional set t ing varies inversely with the square root  of the variance rat io ! . 

It  is perhaps worth ment ioning that  we are interested in …nding the opt imal values of n and 
m, not  with the notion that  they should be adhered to exactly, but  rather with the idea that  
they can serve as a guide in survey planning. 

5 Sample Size Det erminat ion for  Regression Coe¢ cient s 

For household i  in neighborhood j , let  us consider the simple the mult ilevel model 

where 

Yi j  =  ¯ 0j  +  r i j  

¯ 0j  =  °  00 +  °  01z1j  +  ¢¢¢ +  °  0qzqj  +  u0j  

and the f r i j ; u0j g are mutually independent  random variables with E(r i j ) =  E(u0j  ) = 0, 
var(r i j ) =  ¾ , and var(u0j  ) =  ¿2

0. Not ice that  this simple model has no explanatory variables 
at  the household level. 

2

Suppose we want  to est imate a0°  where °  = (°  00; : : : ; ° 0q)
0 and a is a vector of constants 

(a0; : : : ; aq)0. This includes the case in which we are mainly interested in est imat ing a single 
coordinate of ° . Let  °̂ be an (asymptot ically e¢ cient) est imator of ° . Let  m denote the 



number of neighborhoods in the sample; let  n denote the number of households in each 
neighborhood in the sample (assumed constant); and let  E(zj ) =  ¹  and var(zj  ) =  § z. As 
in Snijders and Bosker (1993, pp. 248–249), 

0 ̂ 1 
Ã 

¾2 !  
0(¹  z ¹

0 +  § z)¡ 1var(a ° ) ¼ ¿2
0 +  a z a: 

m n 

They show that  for the cost  model C =  C2m +  C1mn, 
s

C2¾2 
nopt  =  :

C1¿0 
2

For this choice of n, 

var(a0°̂ ) ¼ 
1 µ q

C1¾ +  
q

C2¿0

¶ 2 
a0(¹  z ¹ z 

0 +  § z)¡ 1a:
C 

Clearly, if we want  to know the total cost  C needed to achieve a speci…ed value of var(a0°̂ ), 
this will be 

C ¼ 
1 µ q

C1¾ +  
q

C2¿0

¶ 2 
a0(¹  z ¹ z 

0 +  § z)¡ 1a:
var(a0°̂ ) 

6 Sample Size Det erminat ion for  t he I nt raclass Cor relat ion Coe¢ cient  

The variance for est imat ing the intraclass correlat ion coe¢ cient  ½ is 

2(1 ¡  ½)2(1 +  (n ¡  1)½)2 
var(½̂) =  

n(n ¡  1)(m ¡  1) 

(Snijders and Bosker, 1999, p. 21). We would like to …nd the value of n that  minimizes this 
expression subject  to the cost  constraint  C =  C2m +  C1mn (so that  m = (C2 +  C1n)=C). 
This can be done, but  the expression is cumbersome and not  of any use. We will instead 
opt imize the nearly equal expression 

This gives 

2(1 ¡  ½)2(1 +  (n ¡  1)½)2 
: 

(n ¡  1)2m 

q
8½(1 +  C2=C1) + 1 1 

nopt  =  + + 1:
2½ 2½ 

(3) 

The variance expression (3) at  nopt  can be easily solved for C, giving the cost  needed to 
achieve a given (approximate) variance for ½̂. 

7 Final  Remark 

The importance of mult ilevel models among today’s data analysts poses a challenge to de-
signers of surveys. The surveys should be well designed for mult ilevel analysis. Research 
into the design of such surveys is an excit ing and relat ively new area. 
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